数学专业的心得体会
微文呈现整理的数学专业的心得体会(精选4篇),汇集精品内容供参考,请您欣赏。
数学专业的心得体会 篇1
20xx年8月18日——19日,我参加了“20xx普陀教学文化节”小学数学学科教师专业发展高端研修培训。在这段时间的学习中,我认真聆听了很多专家的精彩讲座,有省教研员斯苗儿老师的讲座《关注经验重视习惯》解读了20xx年版《数学课程标准》学习体会,有沈家门小学戚南凤老师的讲座《顺应变革,扎实常态教学》,有沈一小翁飞萍老师的讲座《小学数学课堂教学的一点思考——选择有效材料促进有效教学》,更有幸聆听了南海实验学校苏明杰老师和杭州崇文实验学校徐卫国老师的现场教学《圆的认识》以及他们各自课后对教学的反思与理解。更积极做好学习笔记,努力用新知识来提高自己。专家们精湛的教艺,先进的理念,独特的设计给我留下了深刻的印象,使我受益匪浅,有了质的飞跃。现简要总结如下:
一、培训学习非常必要。
整个培训活动安排合理,内容丰富,专家们的解惑都是我们教师所关注和急需的领域,是我们发自内心想在这次培训中能得到提高的内容,可以说是“人心所向”。作为一名新课改的实施者,我们应积极投身于新课改的发展之中,成为新课标实施的引领者,与全体教师共同致力于新课标的研究与探索中,共同寻求适应现代教学改革的心路,切实以新观念、新思路、新方法投入教学,适应现代教学改革需要,切实发挥新课标在新时期教学改革中的科学性、引领性,使学生在新课改中获得能力的提高。
二、知识更新非常必要。
“活到老,学到老,知识也有保质期”、“教师不光要有一桶水,更要有流动的水”作为教师,实践经验是财富,同时也可能是羁绊,骨干教师都有熟练驾驭课堂的能力,那是在应试教育的模式下形成的,在实施新课程中会不自觉地走上老路。新课程标准出台后,教材也做了很大的修改,教材体系打乱了,熟悉的内容不见了,造成许多的不适应,教师因此对课程改革产生了抵触情绪,这种抵触情绪我也有过,所幸没有持续很久。现在20xx年版《数学课程标准》在原来新课程实施的过程中,总结经验,适当调整教学内容,相信新的教材会更适合学生的学习,有利于学生数学能力的提高。
三、注重方法非常必要。
教师在实际教学中,只有多联系生活,多创设情境,多动手操作,注重教学方法和学习方法,课堂才有实效。
新课程标准要求学生的学习内容是现实的,有意义的,富有挑战性的。讲座中专家也讲到,教师要重视创设贴近学生生活实际的教学情境,选择有效的学习材料,激发学生探究的兴趣和欲望,使学生体会到数学知识就在我们身边,理解数学与生活的联系,有利于学生主动地进行观察,实践,猜测,验证,推理与交流等数学活动。同时还要注意激发学生学习的兴趣,体现学生学习的主动性,重视学生的动手操作,重视实践活动的应用。更要顺应变革,扎实常态教学,立足课堂,提高效率。这一点在南海实验学校苏明杰老师的《圆的认识》一课中体现的淋漓尽致,苏老师在课堂上将自己的引导地位体现得很到位。同样干练、简洁的语言则体现了数学学科的严谨性。
培训活动虽然是短暂的,但无论是从思想上,还是专业上,对我而言,都是一个很大的提高。在今后的工作中,我会努力学习,做好后续研修,在实践、学习中不断进步。
数学专业的心得体会 篇2
虽然不是数学系学生(化学系学生),但是觉得也勉强可以回答一下。
数学分析我也坐等大佬填坑,我数学分析学的并不好;高等代数倒是可以说说一点一孔之见,有点长,欢迎友好交流。
高等代数是研究线性关系的代数学,是当代代数学的基础。那么既然提到线性关系,那么最容易想到的一定是一次齐次多项式(不论是一元多项式,或者多元多项式),你可以想一下,在同一平面内的两条直线,有哪几种关系?
这个我想大家都想的明白:相交、平行或者重合。相互“平行”的几个一次齐次多项式组成的方程(条件独立)不就是线性方程组吗?相互“相交”的不就是多项式环(几个多项式依赖于乘法结合)?相互“重合”的不就是重因式吗?(重合可以看做相交的特殊情况,就是有解的情况下有无穷解,所以划到多项式环一点问题没有)
所以,国内较为常见的打开思路是要么先讲一元多项式环(或者多项式环),以张贤科先生《高等代数学》和孟道骥先生《高等代数与解析几何》的`书为例;要么先讲线性方程组,以丘维声先生《高等代数》为例。姚慕生老师的书《高等代数学》开篇就是行列式,按照个人观点来看其实有问题的。从行列式的三种定义(从线性变换对应矩阵表示的角度来讲,明显不合适,观点太超前了;从映射的角度来讲,对初学者太抽象;从逆序数组合乘积再求和来讲,没有直观意义,只是沦为计算工具)来看,其十分不适合放在开篇第一章的位置。相应的,我是非常不待见考研数学线性代数经典书籍同济版本的线性代数的,这书我相信开篇行列式的打开方式令无数考研同学对于代数从此一叶障目,不见泰山。
个人比较推崇丘维声老师的思路。原因有以下几点:
第一,不仅结构相对清晰,而且思路叙述相对完备。举个例子,从线性方程组的完全求解(即完全解决线性方程组的求解方法——Gauss-Jordan算法和解的结构)开始,第一章叙述求解方法,(第二章叙述行列式,我觉得这是一个败笔。我本人也曾用他的教材授过一次课,跳过完全没问题,一个跳过去完全不影响以后发展的章节说明其在结构上是赘余的,所以说是败笔)第三章通过n维向量空间作为脚手架来解决解的结构问题,接着引出矩阵(系数矩阵)的表示方法,引出矩阵解法。这一系列线性代数的基本概念都在解决线性方程组求解的问题中产生,并发挥作用,证明也很大程度上依赖线性方程组的基本理论,可以说结构相对清晰,中间为什么引入向量叙述也算是比较充分(但是个人在授课时依然倾向于让学生在观察求解线性方程组时系数的变化情况而引入,而不是先引入再告诉你联系,觉得这样更有逻辑些,但是毕竟有所提及,解释问题)。
我同意这样的看法:代数学是“生产定理的机器”,是研究结构的学科。有一个清晰的结构很重要,但叙述思想与概念的来源同样非常重要,因为这样的想法可以指导以后的认知,这是真正的授之以渔。
第二,定理内容深刻,进行了很大推广,在推广过程中让读者意识到每个条件的意义。第五章是特征值与特征向量,第六章是二次型(后二章里面用了大量一元多项式环的内容,虽然结论深刻了,但是要求提高了)(至此线性代数部分结束,转入高等代数部分),仅靠上半本和下半本的第七章就可以对于矩阵的特征值和特征向量有相对充分的认识了(当然,有些问题还是没能够解决,比如怎样的多项式的特征值重数不变)。之后的第十章讨论了具有度量的线性空间,并不限于实数域与复数域,还推广到了一般域(通常这个域的特征不为2)的情况,叙述正交空间与辛空间,这其实对于矢量与场论分析基础有帮助(比如,正交变换作用于一个标准正交基可得到另一个标准正交基等价于两个标准正交基做的非退化线性变换必为正交变换,这在有限维实内积空间或酉空间不可以如此论述,因为这两个基不是数域上的向量,是一般域上的),这个是很好的,也帮助读者更好认识从实数域、经过复数域再到一般数域,因为正定性这一关键(不然就没有办法定义内积)而不断放低条件的过程。
第三,例题丰富,便于自学,并至少试图进行广泛应用。表明所学的意义和用法,这一点也非常重要。我们当下很多的学生只是单纯的学习数学知识,但是对于学科的基本思想与方法全然无睹,导致的严重后果是当需要用到这些知识的时候学生们要么根本不记得多少,要么根本想不起来用。个人认为大学最重要的是培养的是人的思维方式,而不是知识(当然不是不重要,只是有了这些才有真正意义上的知识)。让读者能够学以致用,这一点上,在国内的基础教材内,丘维声老师的书确实做的非常好。
以上既是丘老师书的优点,也是在阅读的时候需要注意的:注意叙述的时候课程或者教材结构的合理性;注重每个定理的意义和条件的意义;进行应用和推广时应注意什么。
这个其实也是是学习数学的一般思维。当然针对于代数,我也有其他的一些想法与认识,(敲黑板),以下是学习代数时应该注意的想法和方式:
第一,注意有限与无限的区别。无限和有限的意义往往不一样,这个在有限维里成立的命题,未必可以推广到无限维。比如伴随变换在有限维酉空间里一定有,但是在无限维酉空间里就不一定有了。但是线性空间的补空间在有限维和无限维空间里都是有的。
第二,要有“基”和维数的意识,这是(有限维的)线性代数独有的。研究一个有限维的线性空间只需要找到一个基,研究一个有限维线性空间上的线性变换除了找对应关系,还是要找一个基(线性映射找两个)。有了基才有坐标的意义,度量才有了意义。与基相关联的还有维数,这同样是描述线性空间的核心数学量(比如,两个有限维实内积空间同构当且仅当二者同维)。我所指的基,可不仅仅指线性空间中的基,还有多项式环中的不可约多项式(这往往倒是无限多的),不可约多项式和线性空间的基看似是不同的概念,却都是构筑相应结构(基域上多项式环和基域上有限维线性空间)的“砖石”。这个观点非常重要,以后讲述抽象代数,这个“砖石”有名字的,叫做“生成元”,甚至于学习群表示论,我们更关心群的不可约表示,就是因为这个。
第三,以研究态射为高等代数的核心。当然这也是后续课程抽象代数学的核心。高等代数的重难点就是线性空间与线性映射,搞不清楚这一点就没办法弄清楚结构问题,或者“作用效果”。解决问题一定要抓住要解决所需的必要条件,比如做一个矩阵分解,我得知道矩阵分解能够体现什么特征。比如,我做一个极分解,结果相当于做第一类正交变换和仿射变换这说明我作用这个矩阵可以得到这样的效果(类比于经典力学中曲线运动,我将力分解为切向力和法向力,每个分力都要承担效果的)。
第四,学习抓临界条件来解决关键问题,不要随意丢弃“脚手架”。秩的概念的本质就是向量集合的最小的生成元集中元素的个数,最小多项式更是如此(次数最低的零化多项式)。最小本质就是一种临界条件(有点类似于物理中的临界问题,或者边界条件?),临界状态往往是突破口;还有一些用过的工具用过了不代表没用,比如向量组提出其实可以看做是用来解决线性方程组问题的,但是解决了不代表就没其他用了,相应的,在度量上,其依然发挥着重要作用。
这就是个人的一点观点,不局限于高等代数(也一定不能局限,否则难以提出真正的高观点),再次表示欢迎真正的大佬前来指教,姑且作为抛砖引玉了。
数学专业的心得体会 篇3
作为一个过来人,我觉得这是比较正常的,题主不需要有多余焦虑。在我大一刚开始学数分和高代时,整个思维模式也受到了“新数学”的洗礼,有一个适应的过程。可能,对于大学之前没怎么接触过这些课程的大部分人,都会有与你类似的感受。
反正我们班在大一之后,有好多弃坑转专业的,认为大学“数学”跟想象的不一样,整天就是概念证明啥的,有些枯燥无味。
我想这主要是因为我们被中学的数学束缚太久,习惯了“计算式”的数学。
想一想,我们在大学之前所接触的数学,主要是初等代数,平面和立体几何,三角函数和圆锥曲线,多项式和不等式等内容,课上所学也注重技巧的运用,和形式的计算及简单的推导。事实上,这些绝大多数是三百年前甚至两千年前的知识,关于现代数学的涉及基本没有。
即使高中时接触到了导数,极值等有关极限的概念,但没有讲更深。很多概念,还是停留在特定模式的计算和“只可意会不可言传”的理解层次上。
而近代数学的发展,特别是分析的严谨化以来,“数学的本质已经不是计算,对数学的精通不意味着能够做复杂计算或者熟练推演符号。近代数学的重心已从计算求解转变为注重理解抽象的概念和关系。
证明不仅仅是按照规则变换对象,而是从概念出发进行逻辑推演。”所以,从高中到大学,所学的数学,内容上可以说是有了质的提升和深化。尤其数分里,很多知识点的定义,真真表现了分析的严谨和自成体系的理论。像极限的表述,就把一个脑海里变动的过程所导致的结果,合理地用定性的语言作了描述。
这很“数学”,不再是意会的说不清道不明。虽然会遇到困难,但是我相信当你耐心地钻进去,体会概念之间的联系,证明的精巧和严谨会极大地刺激你的求知欲,这是数学专业学生的必经之路。
我认为你目前的状态,首先要能清楚地理解每一个概念和定义。如果有不清晰的点,请教一下老师,这是事半功倍的,因为以老师多年的数学功底和教学经验,可以帮助你更准确地把握一些关键知识点和定理的运用,平时要及时地多做练习,掌握一些解题的技巧。
可以买一些教材配套的参考书啥的,遇到不会的,学习一下标准的解答,也不要死磕,毕竟没有那么多时间和精力。一切学习,都是从模仿开始的,根据书上定理或者例题的证明思路,要学着去尝试证明别的题。
总之,要多读,多想,多做,这样你的学习能力的积累和理解力才能提升。学好这些基础课是极其重要的,后续的很多课程:像实变函数、泛函分析,抽象代数等都是数分高代的抽象版,如果一开始的学习里积攒很多不扎实的点,会让以后变得更加难以捉摸。
我自己现在就是,当开始真正研究问题时,不得不耗费精力去弥补之前的不足之处。
守得云开见月明,我觉得如果你是真正爱数学,能作为一名数学专业的学生去感受数学所表现出的优美和深刻是很幸运的,你有机会去真正理解数学是什么?加油,我相信你会做的越来越好
数学专业的心得体会 篇4
早些年的时候,是进修八字术数的,刚开始看周易,便率先接触到八八六十四卦,那个时候没有耐心看,觉得演变的头晕脑混的。再加上觉得四柱八字预测得先让来人报“生辰八字”很麻烦,有的甚至还不知道自己的生辰八字,觉的此项预测术不适合我,所以学了没多久,就跑到奇门遁甲的世界里。然后再奇门遁甲里旁触到“梅花易数”,说是深研究,其实也不过是照卦说卦,相当的死板了。
奇门遁甲的实战中,总结出“申家奇门”的思路,奇门遁甲可以让我“玩的全盘转”,那么梅花易数是不是也可以改变研究策略?扔掉电子书、笔记,来个活学活用?奇门遁甲是风火轮,可以全盘转,那梅花易数能不能把大自然变成“游乐场”?随处可“点”可“用”呢?
上网搜索了有关“梅花易数“的资料,以“梅花易数入门”、“梅花易数如何学习”、“梅花易数笔记”等相关字眼进行搜索,也因此注册了很多易学论坛,为的是下载相关的“梅花易数”资料,看了看,基本上跟我买回来的“梅花易数”书说的一样,更是神秘莫测了,有关的测例也是少的可怜,怪不得“梅花易数”给人感觉那么“深”,那么“玄”了。
其实那些资料“看了等于白看”,根本不会有什么长进,顶多教你个怎么排卦而已,解卦的过程你根本摸不到。“梅花易数”分体用卦,体用两个卦变来变去,最后一锤定音出了个变卦,而变卦并不是事情的最终结果,最经典的部分在于那变化之间。6个爻再加上六个爻,上卦加下卦,单独来看又是八卦中的一个小卦。就是两个小碗跟一个纸团的游戏,类似考眼力的游戏。