九年级数学公开课《直线与圆的位置关系》说课稿
微文呈现整理的九年级数学公开课《直线与圆的位置关系》说课稿(精选4篇),汇集精品内容供参考,请您欣赏。
九年级数学公开课《直线与圆的位置关系》说课稿 篇1
授课时间:
20xx.11.17早上第二节
授课班级:
初三、1班
授课教师:
xx
教学内容:
7.7直线和圆的位置关系
教学目标:
过程与方法目标:
1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析、概括、知识迁移的能力;
2.通过例题教学,培养学生灵活运用知识的解决能力。
情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
教学重点:
直线和圆的位置关系的判定方法和性质
教学难点:
直线和圆的三种位置关系的研究及运用
教学程序设计:
利用多媒体放映落日的动画。引导学生从公共点个数和圆心到直线的距离两方面体会直线和圆的不同位置关系。
学生看投影并思考问题
调动学生积极主动参与数学活动中.
探究新知
今天我们学习7.7直线和圆的位置关系。
1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。
2、观察圆心到直线的距离d与r的大小变化,类比点和圆的位置关系由圆半径和点与圆心的.距离的数量关系来判定,总结得出直线与圆的位置关系由圆心到直线的距离与圆半径之间的数量关系来判定。得到直线和圆的位置关系的判定方法和性质。6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数
布置作业
1、课本第101页7.3A组第2、3题
2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。
九年级数学公开课《直线与圆的位置关系》说课稿 篇2
一、教学目标:
根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:
1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
b、根据定义来判断直线和圆的位置关系,
会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
二、教材的重点难点
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
三、在教学中如何突破这个重点和难点
解决重点的方法主要是:
(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况)
(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
在说直线与圆的位置关系时,如何突破这个难点:
(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。
(2)把直线在圆的.上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆O的半径为r,圆心到直线的距离为d,
1.直线l与圆O相交d 2.直线l与圆O相切d=r 3.直线l与圆O相离d>r (上述结论中的符号“”读作“等价于”) 式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。 四、教学程序 创设情境------导入新课------新授-------巩固练习-----学生质疑------学生小结------布置作业 [提问]通过观察、演示,你知道直线和圆有几种位置关系? [讨论]一轮红日从海平面升起的照片 [新授]给出相交、相切、相离的定义。 [类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。 [巩固练习]例1, 出示例题 例1在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm 由学生填写下例表格。 直线和圆的位置关系 公共点个数 圆心到直线距离d与半径r关系 公共点名称 直线名称 图形 补充练习的答案由师生一起归纳填写 教学小结 直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。 本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。 一、教学内容分析 1、教材分析: 《圆》这一章,是学生平面几何学习中一个重要的内容,如何在圆的教学中,让学生在直线型图形研究的基础上进一步去体会研究几何图形的思维和方法,深刻领悟几何学的学科观点,有着非常重要的意义。下面是《圆》这一章的框架图: 2、学情分析: 通过前面8章的有关几何的学习,学生已经具备了一定的空间概念和几何直观,具有研究几何图形的思维和方法,有了上节课点和圆的位置关系的铺垫,学生对于探究直线和圆的位置关系并不会感到陌生。 二、教学目标的确定 根据教学内容的特点及学生的实际情况,确定了三个方面的目标: 1、了解直线和圆的三种位置关系,并能简单应用。 2、在探究过程中,提高学生观察、分析、抽象概括的能力,体会数学的基本思想和思维方式。 3、通过具体的探究活动,认识数学具有抽象、严谨的特点,体会数学的价值。 本节课的教学重点是探究直线和圆的位置关系,并能简单应用; 本节课的教学难点是能够从几何和代数两个角度分析直线和圆的位置关系。 三、教学方法的选择 根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法,教学中使用了几何画板来辅助教学。 四、教学过程的具体设计 为达到本节课的.教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:复习旧知,引入课题;探索归纳,得出结论;拓展运用,巩固新知;归纳小结,提高认知。具体过程如下: (一)复习旧知,引入课题 提前准备好的学案上,只有一个O,如右图, 按照相应要求作图: 1、作点P 2、过点P作直线 对于问题1的预案: 设计意图:以学生自己动手画图的形式,复习了上节课的知识————点和圆的位置关系,为接下来探究直线和圆的位置关系奠定基础。 对于问题2的预案: 根据直线和圆的位置关系,将上述所有的情况分类: 提问1:分成几类: 提问2:分类的依据是什么 引导学生得出:根据直线和圆的公共点个数,可以把直线和圆的位置关系分为三类:相交、相切、相离,板书相关概念。 (二)探索归纳,得出结论: 刚才是从几何的角度(交点个数)探究直线和圆的三种位置关系,这阶段将从代数角度将直线和圆的位置关系数量化: 借助几何画板,让学生从运动变化的角度去理解直线和圆的三种位置关系: 圆具有轴对称性,直线也具有轴对称性,所以这个组合图形本身就具有轴对称性,其对称轴是过圆心垂直于该直线的,考虑到对称轴与直线的这种垂直关系在运动的过程中具有不变性,所以我们在考虑用数量来刻画直线和圆的位置关系时,要找的几何量一定是和这种垂直关系密不可分的,因此,圆心到直线的距离就会被考虑,然后先让学生猜想,再用几何画板演示加以严谨的证明验证猜想。 本章的研究主线就是圆的对称性,此环节的设计正符合这个研究逻辑,所以我认为此环节的设计是我的一个亮点。 (三)拓展运用,巩固新知: 1、已知圆的直径是13cm,设圆心到直线的距离是d (1)若d=4。5cm,则直线与圆_______,有______个公共点 (2)若d=6。5cm,则直线与圆_______,有______个公共点 (3)若d=8cm,则直线与圆_________,有______个公共点。 2、已知圆的半径为r,直线上一点到圆心的距离为d,若d=r,则直线与圆的位置关系是() A、相交B、相切C、相离D、相切或相交 3、在中,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是多少? 本阶段的教学主要是通过对例题和练习的思考,使学生初步掌握直线和圆的位置关系,并能简单应用。 (三)归纳小结,提高认识: 知识层面上: 直线和圆的位置关系 相交 相切 相离 公共点的个数 2 1 圆心到直线的距离与半径的关系 d d=r d>r 公共点名称 交点 切点 无 直线名称 割线 切线 无 方法层面上: 经历了从不同角度分析问题和解决问题的过程,掌握解决问题的一些基本方法。 布置作业:学练优P59,60 教学目标: (一)教学知识点: 1.了解直线与圆的三种位置关系。 2.了解圆的切线的概念。 3.掌握直线与圆位置关系的性质。 (二)过程目标: 1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。 2.通过让学生发现与探究来使学生更加深刻地理解知识。 (三)感情目标: 1.通过图形可以增强学生的感观能力。 2.让学生说出解题思路提高学生的语言表达能力。教学重点:直线与圆的位置关系的性质及判定。 教学难点: 有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。 教学过程: 一、创设情境,引入新课 请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。(把太阳看做圆,把海平线看做直线。)师:你发现了什么? (希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。)让学生在本子上画出直线与圆三种不同的位置图。(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答) 二、讨论知识,得出性质 请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系 设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的`位置关系是相交时,d知识梳理: 直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d 三、做做练习,巩固知识抢答,我能行活动: 1、已知圆的直径为13cm,如果直线和圆心的距离分别为 (1)d= (2)d= (3)d=8cm, 那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答: 2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值? (1)相交; (2)相切; (3)相离。 师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题:考考你。 3.在Rt△ABC中,C=900,AC=3cm,BC=4cm。 (1)以A为圆心,3cm为半径的圆与直线BC的位置关系是以A为圆心,2cm为半径的圆与直线BC的位置关系是以A为圆心,为半径的圆与直线BC的位置关系是.师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢? (2)以C为圆心,半径r为何值时,⊙C与直线AB相切?相离?相交? 第3页(请同学们思考讨论后,再请个别同学说出答案)总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的。 比如日出就是r没有变化而d发生了变化。不管哪些变了,哪些没有变,总之d,r和位置关系中,已经两个都可以求第三个量。 四、联系现实,解决实际 在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向。若货船不改变航向,问货船会不会进入暗礁区?让学生完整解答。 五、归纳总结,形成体系师:这节课你有何收获?请个别学生回顾知识,教师再总结完整。 六、布置作业,课后巩固分层作业: 1.基础题:作业本(2)P21; 2.自选题:如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米.有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?九年级数学公开课《直线与圆的位置关系》说课稿 篇3
九年级数学公开课《直线与圆的位置关系》说课稿 篇4