返回首页
微文呈现 > 短文 > 教学教案 > 正文

高中数学必修5等比数列教学教案设计

2025/09/02教学教案

微文呈现整理的高中数学必修5等比数列教学教案设计(精选4篇),汇集精品内容供参考,请您欣赏。

高中数学必修5等比数列教学教案设计 篇1

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一.复习准备

1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课

引入:1“一尺之棰,日取其半,万世不竭。”

2细胞分裂模型

3计算机病毒的传播

由学生通过类比,归纳,猜想,发现等比数列的特点

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式

注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的`,当公比q大于1,公比q小于1时数列是怎么样的?

4以及等比数列和指数函数的关系

5是后一项比前一项。

列:1,2,(略)

小结:等比数列的通项公式

三.巩固练习:

1.教材P59练习1,2,3,题

2.作业:P60习题1,4。

第二课时5.2.4等比数列(二)

教学重点:等比数列的性质

教学难点:等比数列的通项公式的应用

一.复习准备:

提问:等差数列的通项公式

等比数列的通项公式

等差数列的性质

二.讲授新课:

1.讨论:如果是等差列的三项满足

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足

2练习:如果等比数列=4,=16,=?(学生口答)

如果等比数列=4,=16,=?(学生口答)

3等比中项:如果等比数列.那么,

则叫做等比数列的等比中项(教师给出)

4思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三.巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项

解(略)

列4:略:

练习:1在等比数列,已知那么

2P61A组8

高中数学必修5等比数列教学教案设计 篇2

一. 教学内容:等差、等比数列的综合应用

二、教学目标:

综合运用等差、等比数列的定义式、通项公式、性质及前n项求和公式解决相关问题.

三、要点:

(一)等差数列

1. 等差数列的前 项和公式1:

2. 等差数列的前 项和公式2:

3. (m, n, p, q ∈N )

5. 对等差数列前n项和的最值问题有两种:

(1)利用 >0,d<0,前n项和有最大值,可由 ≤0,求得n的值。

当 ≤0,且 二次函数配方法求得最值时n的值。

(二)等比数列

1、等比数列的前n项和公式:

∴当 ① 或 ②

当q=1时, 时,用公式②

2、 是等比数列 不是等比数列

②当q≠-1或k为奇数时, 仍成等比数列

3、等比数列的性质:若m n=p k,则

【典型例题

例1. 在等差数列{ + + + 。

解:由等差中项公式: + , =2 + + =450, + =180

=( + + )+( )+=9 为 项的和。

解:(用错项相消法)

①-② 时,

当 时,例3. 设数列 项之和为 ,若 ,问:数列 ,

即: ,∴ ,

∴即:

例4. 设首项为正数的等比数列,它的前 项之和为80,前 项中数值最大的项为54,求此数列。

解:由题意

代入(1), ,从而

∴ 项中数值最大的项应为第 项

∴ ∴

∴此数列为

例5. 求集合M={mm=2n-1,n∈N*,且m<60=的元素个数及这些元素的和。

,又∵n∈N*

∴满足不等式n< = =900

答案:集合M中一共有30个元素,其和为900。

【模拟

1. 已知等比数列的公比是2,且前四项的和为1,那么前八项的.和为 ( )

A. 15 B. 17 C. 19 D. 21

2. 已知数列{an=3n-2,在数列{an}中取ak2,akn ,… 成等比数列,若k1=2,k2=6,则k4的值 ( )

A. 86 B. 54 C. 160 D. 256

3. 数列A. 750 B. 610 C. 510 D. 505

4.<0的最小的n值是 ( )

A. 5 B. 6 C. 7 D. 8

5. 若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,

则这个数列有 ( )

A. 13项 B. 12项 C. 11项 D. 10项

6. 数列 并且 。则数列的第100项为( )

A. C. 7. 在等差数列{ =-15,公差d=3,求数列{ 的元素个数,并求这些元素的和。

9. 设

(1)问数列 是否是等差数列?(2)求 = +3d,∴ -15= +9, =-24,

∴ =-24n+ = [(n- - 最小时, 最小,

即当n=8或n=9时, =-108最小

高中数学必修5等比数列教学教案设计 篇3

【教学目标】

知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。

能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。

情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。

【教学重点】

等比数列定义的归纳及运用。

【教学难点】

正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列

【教学手段】

多媒体辅助教学

【教学方法】

启发式和讨论式相结合,类比教学.

【课前准备】

制作多媒体课件,准备一张白纸,游标卡尺。

【教学过程】

【导入】

复习回顾:等差数列的定义。

创设问题情境,三个实例激发学生学习兴趣。

1.利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0)

2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。

3.复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.

学生探究三个数列的共同点,引出等比数列的定义。

【新课讲授】

由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。

等差数列:

一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式:an+1-an=d

等比数列:

一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式:an?1 an?q

知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实

例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。

在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的.数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.

例题一

判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.

(1) 1, 4, 16, 32.

(2) 0, 2, 4, 6, 8.

(3) 1,-10,100,-1000,10000.

(4) 81, 27, 9, 3, 1.

(5) a, a, a, a, a.

讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利

用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。

例题二

求出下列等比数列中的未知项:

(1) 2, a, 8;

(2) -4, b, c, ?;

已知数列2, x, d, y,8.是等比数列

①证明数列2, d, 8.仍是等比数列.

②求未知项d.

通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,

也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。

练习

判断下列数列是等差数列还是等比数列?

(1) 22 , 2 , 1 , 2-1, 2-2 .

(2) 3 , 34 , 37, 310 .

引申:已知数列{an}是等差数列,而bn?2n

证明数列{bn}是等比数列。

由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。

【课堂小结】

由学生通过一堂课的学习,做个简单的归纳小结。

1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断

2.等比数列公比q≠0,任意一项都不为零.

3.学习等比数列可以对照等差数列类比做研究.

【作业】

1.书p48. No.1,2; a

高中数学必修5等比数列教学教案设计 篇4

教学要求:

探索并掌握等比数列的前n项和的公式;

结合等比数列的`通项公式研究等比数列的各量;

在具体的问题情境中,发现数列的`等比关系,能用有关知识解决相应问题。

教学重点:

等比数列的前n项和的公式及应用

教学难点:

等比数列的前n项和公式的推导过程。

教学过程:

一、复习准备:

提问:等比数列的通项公式;

等比数列的性质;

等差数列的前n项和公式;

二、讲授新课:

1、教学:

思考:一个细胞每分钟就变成两个,那么经过一个小时,它会分裂成多少个细胞呢?

分析:公比,因为,一个小时有60分钟

思考:那么经过一个小时,一共有多少个细胞呢?

又因为

所以,则=1152921504

则一个小时一共有1152921504个细胞

2、练习:

列1(解略)

列2(解略)

在等比数列中:已知求已知求

在等比数列中,xx,则xx

三、小结:等比数列的前n项和公式

四、作业:P66,1题