返回首页
微文呈现 > 短文 > 教学教案 > 正文

《分数与除法》教案

2025/09/07教学教案

微文呈现整理的《分数与除法》教案(精选4篇),汇集精品内容供参考,请您欣赏。

《分数与除法》教案 篇1

教学内容:

49~50页的内容及练习十二1~12题。

教学目标:

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程。

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学难点:

理解可以用分数表示两个数相除的商。

教具准备:

课件

教学过程:

一、复习导入

1.表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?

3.引入:5除以9,商是多少?板书:5÷9

如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

二、新课讲授

1.教学例1:出示题目。

(1)列出算式。(板书:1÷3=)

(2)讨论:1除以3结果是多少?你是怎样想的?

(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的.,就是个“1”。

板书:1÷3=1/3(个)

2.教学例2:出示题目。

(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(2)口述方法及每份分得的结果,教师总结几种不同的分法。

(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的,即3个块,把3个块饼合起来就是1个饼的,即块,因此,3÷4=3/4(块)。

由此可见,不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。

学生相互说说表示的意义。

3.教学分数与除法的关系。

(1)观察1÷3=3÷4=这两道算式,

想一想

①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?

②用分数表示商时,除式里的被除数,除数分别是分数里的什么?

③分数与除法的关系是怎样的?

(2)总结三点

①分数可以表示除法的商。

②在表示除法的商时,要用除数作分母,被除数作分子。

③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式

(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示。

板书:a÷b=a/b(b≠0)

(4)这里的b能为0吗?为什么?

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)

(5)分数与除法有区别吗?区别在哪里?

(分数是一种数,但也可以看作两个数相除,除法是一种运算)

4.教学例3:出示题目。

(1)列出算式。板书:7÷10

(2)怎样计算?7÷10=

三、巩固练习。

1.做一做:独立完成,集体订正。

2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。

第3、4题:做在书上,集体订正。

第5、6题:独立完成,订正时说一说是怎么想的。

3.作业:练习十二7----11题,选作12题。

四、课堂小结

这节课学习了什么知识,你有哪些收获?

板书设计:

分数与除法

例1:1÷3=1/3(个)

例2:3÷4=3/4(个)

例3:7÷10=7/10

《分数与除法》教案 篇2

教学目标:

1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

教学重点:

弄清单位1的量,会分析题中的数量关系。

教学难点:

分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

(1)吃了是什么意思?应该把哪个数量看作单位1?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。解:设买来大米X千克。

x-x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。解:设航模小组有人。

+=25

(1+)=25

=25

=20

三、小结

1、今天我们学习的.这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

《分数与除法》教案 篇3

教学目标

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

教学重难点

教学重点:弄清单位“1”的量,会分析题中的数量关系。

教学:难点:分数除法应用题的特点及解题思路和解题方法。

教学过程

一、复习

出示复习题:

1、下面各题中应该把哪个量看作单位“1”?

2、用方程解下列各题。

3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重×4/5=体内水分的重量。

4、指名口头列式计算。课件出示。

二、新授

1、教学例1

根据测定,成人体内的.水分约占体重的2/3,而儿童体内的水分约占体重的4/5,小明体内有28千克水分,他的体重是爸爸体重的7/15,小明的体重是多少千克?

爸爸的体重是多少千克?

例1的第一个问题:小明的体重是多少千克?

(1)读题、理解题意,并画出线段图来表示题意:

(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重×4/5=体内水分的重量。

(3)这道题与复习题相比有什么相同点和不同点?

(相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

(5)启发学生应用算术解来解答应用题。

先在小组内独立解答。

课件演示计算的算式。

(根据数量关系式:小明的体重×4/5=体内水分的重量,

反过来,体内水分的重量÷4/5=小明的体重)。

2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

(1)启发学生找到分率句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

爸爸:

小明:

根据数量关系式:爸爸的体重×7/15=小明的体重

小明的体重÷7/15=爸爸的体重

①解方程:解:设爸爸的体重是χ千克。

7/15χ=35

χ=35÷7/15

χ=75

②算术解:35÷7/15=75(千克)

课件演示计算的算式。

3、用方程解应用题应注意哪些问题。

首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间的等量关系,再确定设哪个量为χ,并列出方程。

4、巩固练习:P38“做一做”课件出示:

学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、巩固应用

1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

(先分析数量关系式,然后确定单位“1”,最后再进行解答。)

2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

(注意引导学生发现250ml的鲜牛奶是多余条件)

3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

(引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

独立完成后订正。

四、课堂总结

这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

《分数与除法》教案 篇4

一、复习

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

二、教学分数除法的意义

1、2/7×()=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做。

三、分数除以整数的计算法则

1、这节课我们学习分数除法。

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/80÷4/91÷2/53/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的.分数除法。

出示例题:一张纸的平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式?你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性)

根据学生的回答板书:

3/4÷3=3÷34=1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷34/9÷410/9÷56/7÷2

6、质疑。

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数。

用学生所举的例子作为教学例题(例如1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2)1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报。

(1)1/5÷3=3/15÷3=1/15

(2)1/5÷3=(1/5×5)÷(3×5)=1÷15=

(3)1/5÷3=(1/5×1/3)÷(3×1/3)=1/5×1/3÷1=1/15

(4)……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5÷3=(1/5×1/3)÷(3×1/3)=1/5×1/3÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得:1/5÷3=(1/5×1/3)÷(3×1/3)=1/5×1/3=1/15

观察1/5÷3==1/5×1/3,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化。

刚才小组讨论时,每组用一种方法计算了1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

四、课堂练习

1、计算下列各题。

2/3÷32/11÷23/8÷65/4÷2

2、练习七第1题。

3、讨论题。

1/3÷a和1/a÷3(a≠0),那道题的结果大?为什么?