七年级数学上册教案
微文呈现整理的七年级数学上册教案(精选4篇),汇集精品内容供参考,请您欣赏。
七年级数学上册教案 篇1
【教学目标】
引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;
【教学难点】
找出题目中的可有可无的已知条件,说一说为什么可以这样认为
【教学过程】
问:以前学过的有关路程,时间,和速度之间的关系是怎么样的?你能写出它们之间的关系吗?
出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的2.5倍。现在汽车从甲地到乙地需要多少小时?
分析:要求现在汽车从甲地到乙地需要多少小时,那么先要求出汽车现在的速度,而汽车现在的.速度是原来的2.5倍,那么还得先求出汽车原来的速度。根据`甲乙两地公路全长352千米。汽车原来从甲地到乙要11小时,可以求出汽车原来的速度。
学生写出解答过程:汽车原来的速度:352÷1=32(千米); 汽车现在的速度:32×2.5=80(千米)
现在的时间:352÷80=4.4(小时)
问:用比例的思路该怎么样理解这道题目呢?
分析:甲、乙两地的公路长度一定,汽车的速度和所需的时间成反比例。因为现在的速度是原来的2.5倍,所以原来的时间是现在的
2.5倍。即:11÷2.5=4.4(小时)。
这样解答使得`甲乙两地公路全长352千米成了多余条件,但是又不影响解答问题。
【我们来探索】
一批零件有240个,王师傅单独做需要6小时,李师傅的工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时?
【总结】
在解答应用题时要善于应用不同的思路和技巧,巧解问题
【作业】
丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时?
丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时?
七年级数学上册教案 篇2
教学目标:
1、掌握数轴三要素,能正确画出数轴、
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数、
教学重点:
数轴的概念、
教学难点:
从直观认识到理性认识,从而建立数轴概念、
教与学互动设计:
(一)创设情境,导入新课
课件展示课本P7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴、
【点拨】(1)引导学生学会画数轴、
第一步:画直线,定原点、
第二步:规定从原点向右的方向为正(左边为负方向)、
第三步:选择适当的长度为单位长度(据情况而定)、
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处、
对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴、
做一做学生自己练习画出数轴、
试一试你能利用你自己画的数轴上的点来表示数4,1、5,—3,—2,0吗?
讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示—a的'点在原点的什么位置上?与原点又相距多少个单位长度?
小结整数在数轴上都能找到点表示吗?分数呢?
可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边、
(三)应用迁移,巩固提高
【例1】下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1、5,—3,—,0、
【例3】下列语句:
①数轴上的点只能表示整数;
②数轴是一条直线;
③数轴上的一个点只能表示一个数;
④数轴上找不到既不表示正数,又不表示负数的点;
⑤数轴上的点所表示的数都是有理数、
正确的说法有()
A、1个B、2个C、3个D、4个
【例4】在数轴上表示—2和1,并根据数轴指出所有大于—2而小于1的整数、
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有()
A、1998个或1999个
B、1999个或20xx个
C、20xx个或20xx个
D、20xx个或20xx个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系、它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想、大家要掌握数轴的三要素,正确画出数轴、提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数、
(五)课堂跟踪反馈
夯实基础
1、规定了xx、xx 、的直线叫做数轴,所有的有理数都可从用上的点来表示、
2、P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是、
3、把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()
A、7
B、—3
C、7或—3
D、不能确定
4、在数轴上,原点及原点左边的点所表示的数是()
A、正数
B、负数
C、不是负数
D、不是正数
5、数轴上表示5和—5的点离开原点的距离是,但它们分别表示、
提升能力
6、与原点距离为3、5个单位长度的点有2个,它们分别是和、
7、画出一条数轴,并把下列数表示在数轴上:
+2,—3,0、5,0,—4、5,4,3、
开放探究
8、在数轴上与—1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点、
9、下列四个数中,在—2到0之间的数是()
A、—1 B、1 C、—3 D、3
七年级数学上册教案 篇3
1.2 展开与折叠
教学目标:
1.通过折叠棱柱,发展学生空间观念,积累数学活动经验.
2.了解棱柱的相关概念,认识棱柱的某些特性.
教学重点:棱柱的特性.
教学难点:某些平面图形是否可以折叠成棱柱的思索.
教学过程:
一、设疑自探
1.创设情景,导入新课
我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的.几何体呢?
2.让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答:
(1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢?
(2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢?
(3)这三种棱柱侧面的个数与地面多边形的边数有什么关系?
(4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢?
结合同学们的回答,共同总结出棱柱的性质:
棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形.
3.课堂练习:P11 1.
4.展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米)
七年级数学上册教案 篇4
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力.
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.
教具准备
投影仪.
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的.数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.
六、巩固练习
课本第3页,练习1、2、3、4题.
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.
八、作业布置
1.课本第5页习题1.1复习巩固第1、2、3题.
九、板书设计
略
返回首页