《两位数乘一位数》教学反思
微文呈现整理的《两位数乘一位数》教学反思(精选4篇),汇集精品内容供参考,请您欣赏。
《两位数乘一位数》教学反思 篇1
关于余剑老师执教的《两位数乘一位数(不进位)》一课,我先后听三次。应该说每次都给我留下新的思考,留下较为深刻的印象。本节课是小学阶段的计算教学,教学内容是学生第二次接触乘法。关于计算课的教学,为达到既定的教学目标,学生掌握算理及算法,一般是按部就班教学,但余老师的这节课教学设计颇有新意,不仅保证内容充实,也保证了学生学习的深度。下面就余老师教学设计的特殊之处及细节处理上的一些改动,谈一谈我的感受和思考:
一、说是复习,实则铺垫,巧无声息,层层推进。
在教学复习阶段,余老师无论是试教还是正式上课安排了复习旧知的环节,这个环节实则是结合本节课的教学内容,合理设计的。我个人认为这很有必要,且很有特色,思考到位。这部分教学设计,对学生建立两位数乘一位数这一新概念的认识有很大帮助,借助在此之前学生已经学过的乘法的意义和表内乘除法,这就可以通过复习再现一位数乘一位数、整十数加整十数以及几个十是多少的相关旧知的过程,帮助学生通过已有的经验来认识掌握新的知识,这样加强了新旧知识的.联系,同时也考虑到了学生的差异让学习能力较弱的学生能前后联系,为学习今天的知识降低难度。
试教口算:2×43×31×540+40
正式口算:3×42×56×250+5030+30+3020+20+20+20
这是余老师先后教学的一次比较成功的改进。经过改进的复习题,目的性更明确,增加了几个几十连加的口算环节,这就更加贴近了本节课的教学内容。并且通过学生对这部分复习知识的反馈来应对主题内容教学很有帮助,应该说这样的设计对学习本课知识,学生掌握本课知识很关键。
二、情境引导,突出重点,体验探索,算法优化。
计算教学一个难点就在于计算的枯燥性。学生在学习计算时总是以想当然的态度面对,从而导致学习过程不严谨,思维不紧密,计算错误层出不穷。而本节课的教学,余老师充分结合应用题教学的经验,在问题情境方面下了一点功夫,通过学生对问题的理解产生计算需求;再通过问题推进,使学生产生计算兴趣。这样的教学设计能够帮助学生形成过硬的计算技能,并且是自主投入,自主探索计算方法。这样的教学还培养了学生的数学思想,也从一定程度上陪养了学生积极的情感态度、价值观等。例如:创设了大象运木头,猴子摘桃等丰富多彩,学生喜闻乐见的问题情境,要解决这些问题,就必须学会计算。产生于现实需要的问题就更容易引起学生的探究兴趣,同时也使他们感受到了计算的必要性。大象运木头的主题设计过程由三只大象到五只,再到八只,问题层层推进,学生的计算需求也再逐步提高。
但计算教学并非创设了问题情境就结束的,余老师在解决问题后巧妙的转入到计算教学过程。运用探索算法的过程使学生经历数学化的活动,使他们经过自己的努力解决以前未曾遭遇过的新问题,认识未曾接触过的新知识,掌握未曾运用过的新方法,从这个意义上讲探索算法首先是一种创新的过程。这种创新还源于对算法探索、算法多样化、算法优化的理解。例如:在教学整十数乘一位数的口算时,在出示了主题图后,考虑到学生的差异,余老师引导学生理解题意后集中精力放在计算方法上,余老师让学生自主探索方法,通过与学生交流,得到三种方法:20+20+20=60;2个十乘3得6个十,6个十是60;2×3=6,20×3=60这些都是学生自己想出的方法,余老师都表示肯定,但却不停留在算法的多样化的程度,而是让学生自己比较,筛选出简便的方法,从而使算法优化,而这些也都是学生自己思考得来的。再进行一些这样的练习,使学生掌握优化的算法。
像这样的计算教学过程不仅充分考虑到学生的主体性,还结合知识特点让学生自主探索。探索后列举学生一系列的计算方法,体现算法多样化,这样的过程实则一定程度上体现了差异教学思想。再者通过引导让学生优化算法,从而巩固算法。
《两位数乘一位数》教学反思 篇2
1、教材中选用大象运木头,猴子摘桃,这些低年级学生感兴趣的情境,在课堂中,没有像一般公开课改情境,还是应用这两个情境,激发学生的学习兴趣。苏霍姆林斯基曾说:“如果教师不想方设法使学生产生情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度。而不动情感的脑力劳动就会带来疲倦,没有欢欣鼓舞的心情,学习就会成为学生的负担。”刚才的教学促使我更深刻地理解了这句话。
2、在学生的交流中,我一直引导学生对同伴的方法进行理解,让大家欣赏不同算法的精彩,达到思维的相互沟通和方法的相互融合;引导学生进行比较、归类、优化,在此基础上作出选择和自我调整,使学生的建构活动富有意义。主要体现在对学生尊重不放纵、自主不自由。尊重学生的个性,鼓励学生发表不同的见解,是培养学生数学思维能力的一个有效途径。叶澜教授说:“没有聚焦的发散是没有价值的,聚焦的目的是为了促进学生的发展。”在刚才教学中,既追求解决方法的多样化,也重视方法之间的沟通和优化。教学优化过程是一个促进学生学会反思和自我完善的过程。这时我把主动权交给学生,引导学生进行分析、讨论、比较,使其将自己的算法与别人的'算法作比较,并认识到差距,产生修正自我的需要,从而捂出属于自己的最佳方法。在教学3×20后,很多小朋友认为用3×2=6,推出3×20=60最简单,但有一个女孩认为用20+20+20=60简单。这时,我还是尊重这位同学的相法,没有强调让她和其他同学用同样的方法。在算8×20时,我再问她:“现在你认为哪种方法简单?”她通过再次比较,因为8个20相加太复杂,所以认为由8×2=16推出8×20=160最简单。
因为学生的个人差异,解决同样的问题又想出了不一样的方法,接着带领学生选择其中的最佳方法,这一点十分必要,也就是优化过程。学生思维开放以后,必要的选择是一种科学探究的态度。这一态度也要从低年级培养。
《两位数乘一位数》教学反思 篇3
两位数乘一位数的口算,进位的与不进位的口算方法相同。学生在掌握了两位数乘一位数不进位的口算方法后,应用这一已有知识探索出进位的口算方法对学生而言已不再是难事。我认为在新课的展开时,应注重的是学生的思维过程,因此,我鼓励学生自己去探索口算的方法。在学生探究过程中,一些学生已经能用在脑子中列竖式的方法来口算,一些学生能用前一节所学的方法即两位数乘一位数口算时,可把两位数分成几个十和几个一,然后分别乘一位数,再把乘得的积加起来。应该说,除个别学生外,其他学生都掌握了方法并能正确地进行口算。但是在课堂上,我没有反思这些学生为什么会错,一些学生当然是因为粗心做错,而有些学生对于算理还是有些模糊。在全班反馈中我没有抓住学生的错误进一步反问其为什么会出现这样的错误,而只是一味地让别的同学来帮助他正确解决。然后在课后单独辅导过程中也没有进一步询问其错误的原因。
我看到过这样一段文字:记得有个社会心理学家曾指出:“我们甚至‘期望’学生犯错误”,“因为从错误中吸取教训,便可争取明天的成功”。学生探索新知的过程往往不是笔直的,会产生这样或那样的错误。如果把学生的错误“隐藏”起来使教学显得一帆风顺、严丝合缝,这样的课未必是好课。“剥夺学生犯错的权力就等于限制他们自由选择的.意愿”。所以,数学教学在让学生体验成功的同时,还要给学生尝试错误的权利,让学生在尝试错误的过程中锤炼自我,培养他们敢于克服困难的坚毅性格,进而形成良好的学习品格。
所以,我想,在让学生掌握正确的方法的同时,要让他们充分认识到原有的错误为什么是错的,要让学生学会观察,学会分析,让学生自己去评价、分析错误使全班学生都能关注这种错误,从而真正理解算理。
《两位数乘一位数》教学反思 篇4
本课是初次学习两位数乘一位数的口算和笔算。进行整十数乘一位数的口算时,可以有不同的算法。进行两位数乘一位数的笔算时,在学生自己探索的基础上,重点介绍乘法的笔算方法。结合计算教学培养学生应用知识解决简单实际问题的能力。今天听了束双文老师的《两位数乘一位数》觉得本节课的教学有以下几个亮点:
1.复习铺垫与情境创设
数学的来源,一是来自数学外部现实社会的发展需要;二是来自数学内部的矛盾,即数学本身发展的需要。新课前的复习准备,一是为了通过再现或再认等方式激活学生头脑中已有的相关旧知,二是为新课作出铺垫或分散难点。教学中这个环节,创设情境,通过复习数的组成,唤醒并激活学生头脑中的相关思维细胞,为新知学习作好准备。
2. 算法多样化和算法优化
在学习不进位的口算时,先放手让学生自主探索口算方法,然后通过交流和汇报,展示学生自己探索的口算方法,允许学生有多样化的算法,让学生自己比较,选择自己认为简便的.方法。再结合例题计算20×8,让学生说思考方法。
3.估算与精确计算
在练习巩固环节中,通过商场里购物的情境,请小朋友帮老师估算一下带的钱够不够、大概要带几十元等问题,发展学生估算的能力。最后通过自由选择几个同样的玩具算算要多少钱进行精确计算。
4. 体现学生主体性
学生是课堂的真正主人,是学习的主体。在教学中,充分让学生去探索整十数乘一位数的口算方法和两位数乘一位数(不进位)的竖式计算方法。通过让学生说,交流想法,让学生得到不同程度的发展。
商榷之处:
1.重点不够突出,层次不够清晰
这是学生第一次接触两位数乘一位数的笔算,因此在出示14×2的竖式计算时应该重点强调:“先用2乘个位上的4得8写在个位上,再用2乘十位上的1得2个十写在十位上。”而不是在验算的过程中强调。
在计算整十数乘一位数的口算时,指向不明,应该先让小朋友来说20×3是怎么想的,再说3×20也可以怎么想。而不是教学中两个一起看,层次显得不分明。
2.对教材把握还需加强
对教材的理解,每一环节所要达到的目标都需要做到心中有数。在实际教学中还需要加强。
返回首页