返回首页
微文呈现 > 短文 > 教学教案 > 正文

最小公倍数说课稿

2025/11/06教学教案

微文呈现整理的最小公倍数说课稿(精选4篇),汇集精品内容供参考,请您欣赏。

最小公倍数说课稿 篇1

张**老师的这节课按照数学教学模式“尝试发现——探究形成——联想应用”进行设计,层次清晰,由浅入深。故事的导入一下子就吸引了学生的注意力,进而在具体的问题中抽象出数学问题。教学过程中,落实了“最小公倍数”的概念和“求最小公倍数”的方法。练习题的设计也体现了基础知识的运用和拓展训练的层次性。

教师问题的提出很有效。如引导学生探究公倍数的个数时,教师在学生给出答案的时候,并没有急于总结,而是利用板书追问4的倍数是无限的,6的倍数也是无限的,从而学生们会发现4、6公倍数的个数也是无限的。再如:找到50以内8和12的最小公倍数,教师提出问题:“最小公倍数与后面的公倍数之间有什么关系?”在逐步落实基础知识教学的同时,提升了学生的认识。

喜闻乐见的阿凡提故事是学生们喜欢的经典内容,张聪聪老师巧妙地运用到了教学的导入中,通过猜想,圈一圈、说一说、议一议等自主活动,让学生初步尝试理解、在生活情境中接触最小公倍数和公倍数的.知识。在探究的过程中,张老师更加注重学生的自主探究,完全运用学生的方法来求两个数的最小公倍数,张老师在学生的汇报中,结合学生的讲解,不断点拨,不断提升,不但介绍了多种解决问题的方法,还注重了学生的方法的择优思想的培养,这样才能使学生学会灵活运用所学的知识。整个课堂过程流畅、清晰,关注学生的发展。

最小公倍数说课稿 篇2

一、教材分析:

我说课的内容是:人教版五年级下册第88~90页的《最小公倍数》一课。最小公倍数是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用,这节课是一节以概念为本的教学。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。

二、学情分析:

在不同的学校、班级进行前测,直接让不同认知水平的学生,用模拟的小长方形墙砖铺成正方形。在动手操作中,由于受密铺的影响,横拼竖摆,不但耗时过长,而且很难有效的构建公倍数内在的结构关系。因此在设计操作环节时,我搭建“脚手架”。通过构建公倍数内在的结构关系和构建公倍数体系两个环节进行有效教学。成功搭建起教学内容与学生求知心理之间的桥梁。

三、教学目标:

(1)建立公倍数与最小公倍数的概念,会用集合图表示。掌握求100以内两个数最小公倍数的方法。

(2)通过动手操作、独立思考、合作探究、合作交流等方式,建立公倍数和最小公倍数的概念,培养发现问题、解决问题的能力。

(3)学会用数学的眼光观察生活、思考问题。积极参与到对数学问题的探究活动中。真真切切地体验到学习数学的快乐和价值。

教学重点:建立公倍数与最小公倍数的概念。

教学难点:掌握求100以内两个数最小公倍数的方法。

四、教学准备:

游戏卡片一套,模拟墙壁的平面图、模拟长方形墙砖多套,作业纸多张和多媒体课件一套。

五、教法和学法:

加点理念课堂上我采用尝试教学法和启发教学法。

学生通过动手操作、独立思考、合作探究、合作交流等方法进行学习。

六、教学过程:

这节课我按照下面五个环节进行教学:初步感知,建立表象;动手操作,建立概念;自主探究,归纳方法;实际应用,回归生活;全课总结,延伸课外。

(一)、初步感知,建立表象。

首先我从游戏中引入,我把枯燥的倍数复习设计成“抢倍数的游戏”。让学生初步感悟公倍数。(预设5—6分钟)

具体操作:

首先我手里拿着数字卡片,给学生说,今天老师给大家带来一个风靡我们全班的游戏—抢倍数游戏。面对全体同学讲一下规则:找两个同学上来,一个负责抢3的倍数,一个负责抢2的倍数。老师把卡片放到黑板上,过了抢的时间老师会把卡片收起来。最后抢的多的同学获胜。

然后把全班分成两大组,要求每组快速派一名代表上来。当两名学生上台进行游戏,其他学生做裁判共同参与。

接下来游戏,当第7张卡片出来的时候,两个同学会同时抢6这个数字。如果没有出现抢的局面。我会再出示12这个数字。学生很容易发现并说出:数字6是决定游戏胜负的关键,因为6既是2的倍数,又是3的倍数。

紧跟着追问:“为什么都来抢6这张卡片”。先让这两个代表说说,再让其他同学说说。

然后揭示出公倍数的概念。6既是2的倍数,又是3的倍数,也就是说6是3和2公有的倍数,我们把6叫做3和2的公倍数。(板书公倍数及概念。)

引导学生想想:那你还知道哪个数是3和2的公倍数?

学生答出12、18、24等数,并用这些数完整的表述出公倍数的概念。

及时表扬说的对,说的完整的同学。多让几个同学说说,并让同桌说说,强化公倍数的概念。

【设计理念:布鲁纳说过:“获得的知识如果没有完整的结构把他们连在一起,那是多半会遗忘的知识。”学习一个概念,需要组织起适当的认知结构,并使之成为内部知识网络的一部分。所以复习倍数的知识是理解公倍数、最小公倍数意义的关键。为了创设学生乐学的氛围,让学生从无意识的玩到有意识的关注6是3和2的公倍数,建立公倍数的概念。体现了认知的由浅入深的过程。】

(二)、动手操作,建立概念。

这一大环节是深刻理解公倍数,建立最小公倍数的重点内容,为此我分两个层次进行教学。

(1)固定的正方形边长,选择长方形墙砖。(预设6—7分)

首先在前面通过游戏感悟公倍数的基础上,过渡到生活中。让学生体验公倍数能在生活中帮我们做什么。

(出示生活情境,课件显示。)

当学生明白题意后,要求学生利用模拟的长方形墙砖和墙壁正方形平面图。

分小组活动进行动手操作。学生通过摆一摆,画一画,得到不同的方案。

然后让学生汇报想法,谁来说说:你们小组选择的是长几分米,宽几分米的墙砖,怎样铺的?

在汇报方案时,学生都会选择长3分米,宽2分米的墙砖。让学生说说自己的想法。适时进行追问:“正方形墙面墙壁的边长所用墙砖的长和宽有什么关系?”

让学生自主发现:按照要求进行,所铺成的正方形边长必须是小长方形长和宽的公倍数这一结论。

这个时候多让几个学生说说这一结论。

其次我再追问:“大家为什么都不选择长5分米,宽3分米的墙砖?”

学生很容易答出,因为12不是5和3的公倍数。

最后我作课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。”

【设计意图:这一环节搭建的“脚手架”过程,让学生直观的感受到公倍数的意义,这样由实际生活抽象出概念,既有利于培养学生的数学抽象能力,也有利揭示数学与现实世界的联系,帮助学生理解公倍数、最小公倍数概念的现实意义。】

(2)用固定的长方形墙砖,铺多个的正方形。(预设6—7分)

从上个环节直接过渡到问题中。“同学们,真了不起,通过动手操作,获得很有价值的发现。(课件出示情境)用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”

然后先让学生独立思考。当有的同学有想法后,请同学们拿出表格,填写完整。

让学生填出表格,空间想象能力好的学生能直接想到这些正方形的边长都是2和3的公倍数,想象不出来的,允许动手摆一摆,画一画。

其次把两个同学的表格用实物投影仪打出。让学生交流这样填的想法。

学生有可能答出:发现这些正方形的边长必须是所铺长方形墙砖长和宽的公倍数。及时表扬:“你能用今天所学的公倍数知识解决问题,这了不起”

还可能发现:其他公倍数都是6的倍数;最小的公倍数;公倍数是有很多个…

如果没有学生说出来,及时追问:“察这些公倍数,最小的是几?”学生很容易

说出6是公倍数中最小的。揭示出:6是最小的公倍数。叫做3和2的最小公倍数。(板书:最小)

及时强化最小公倍数的概念。让多个学生说说6是3和2的什么数?同桌也互相说说。

再次追问:3和2有没有最大的公倍数?这些公倍数能写完吗?让学生说出公倍数是无限的。

【设计意图:怎样能让学生深刻理解最小公倍数的'意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。】

(3)用集合圈表示倍数、公倍数、最小公倍数。(预设4—5分)

首先让学生用数学上的集合圈的形式表示3的倍数和2的倍数。并把3和2的公倍数画出来。(课件出示两个空白的集合圈)。学生写完后,汇报结果。同时课件显示出答案。

然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)

让学生思考、交流。明白各部分填什么,怎样填。让学生在作业纸上

完成后汇报结果。(课件出示答案)并让学生说说3和2的公倍数和最小公倍数,再次理解公倍数和最小公倍数。

【设计意图:根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透。感受数学化的简洁美。】

(三)、自主探究,归纳方法。(预设7—8分钟)

这一环节是让学生自主探究出找两个数的最小公倍数的方法。

直接出示问题:那给你两个数6和8,怎样求这两个数的最小公倍数。(板书:怎样求6和8的最小公倍数。)

这时候给学生独立思考的时间。当学生有了想法后,让学生拿出作业纸,把过程写出来。

然后让学生小组可以互相交流一下。

接下来让学生进行汇报。(找几个不同的方法,用实物投影仪展示出来。)

在展示过程中,让学生交流、争辩,在交流各种方法的同时,可能发现:两个数相乘方法和倍数关系时找最大数的局限性。认识到列举法的普遍性。

在学生交流各自的方法后。我会说:老师非常欣赏大家的方法。我这也

有个方法。我们可以把这些数在有方向的直线上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重叠的线段是6和8的公倍数。

(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

【设计理念:探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种类似学术研究的情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。】

(四)实际应用,回归生活。(预设3—4分钟)

做一个课堂小结,转到学生解决问题中。“大家通过自己的努力,认识了公倍数和最小公倍。掌握了求两个数的最小公倍数的方法。相信大家一定有很深的收获。让我们带着收获进行下面的练习。相信你一定没有问题。”

课件出示一道生活情境题)

2、学生交流汇报得出:全班可能有48人或24人,最少为24人。

【教学理念:数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。】

(五)全课总结,延伸课外。(预设3分钟)

告诉学生在天文学中也有最小公倍数的知识,让学生边听边看屏幕:

(随着音乐的响起,播放图片。)。

我朗诵:中国人对日食现象的记载,已有将近四千年的历史。在汉代就发现日食出现具有一定的周期。月球从月初到下一次月初是一个朔望月,平均约长30天。太阳从月球轨道的升交点再回到升交点是一交点年,平均约长347天。朔望月与交点年的最小公倍数就和日食的周期有关。

课堂结语:“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”

【教学理念:数学与生活有着密切的联系。利用收集到的生活资料,开发出更多的教学资源,让学生整体感知数学在生活中的应用,真正体验“数学来源于生活,又运用于生活”。学生是带着问号走进课堂,又将带着问号走出课堂?这样的数学教学带给学生的是智慧的行囊,生命的启迪。】

最小公倍数说课稿 篇3

一、教学内容

《义务教育教科书数学》(人教版)五年级下册第70页例3。

二、教学目标

1、学会用公倍数和最小公倍数的知识解决生活中的实际问题,体验数学与生活的密切联系。

2、能够将生活中的实际问题转化为数学问题,提高解决问题的能力。

三、教学重难点

学会用公倍数和最小公倍数的知识解决生活中的实际问题。

四、活动设计

接下来,让我们一起走进今天的数学课堂。在学习新知识前,我们先来复习上节课的内容。

1、回顾求两个数的公倍数和最小公倍数的方法。

请你找出下列每组数的最小公倍数。6和92和148和9

第一组:找6和9的最小公倍数,可以先写出9的倍数,再从中圈出6的倍数,其中从小到大第一个圈出的就是它们的最小公倍数。

第二组:因为14是2的倍数,所以14是它们的最小公倍数。

第三组:因为8和9只有公因数1,所以两个数的积72是它们的最小公倍数。

2、教学例3。

这节课,我们一起利用求公倍数和最小公倍数的方法解决生活中的实际问题。王叔叔在装修房子时遇到了这样的问题,请你认真读一读,题目中有哪些重要的数学信息呢?(出示例3)

阅读与理解:王叔叔装修墙面用的墙砖是一个长3分米,宽2分米的长方形,要用许多块这样的长方形墙砖铺成一个正方形,而且墙砖必须用整块的,王叔叔想让我们帮着找一找,拼成的正方形的边长是多少分米?其中最小是多少分米呢?可以怎么拼呢,一起试一试。

分析与解答:横着铺两块,我们先铺一行,铺成的图形显然不是正方形,再铺一行,也不是正方形,那么铺三行呢?铺成的图形是正方形吗?我们一起算一算,横着铺两块,它的长就是2个3,6分米,铺了这样的三行,竖着看就有3个2,它的长度也是6分米,不错,我们铺成了一个边长是6分米的正方形。

那么横着铺3块可以吗?再一起试一试,横着铺3块,它的长是9分米,铺两行宽是4分米,铺三行是6分米,铺四行是8分米,如果铺五行就是10分米,因为墙砖必须是整块的,所以不能铺成9分米的长度,也就不能铺成一个正方形。

我们还可以这么拼,横着铺4块,铺一行、铺两行,显然都不是正方形,大家想一想,铺几行才能铺成一个正方形呢?有同学说可以铺6行,大家一起算一算,铺6行是不是正方形?横着铺4块,长就是4个3,12分米,铺这样的6行,就有6个2,也是12分米,真好,我们又铺成了一个边长是12分米的正方形。

通过铺一铺,算一算,我们铺成了一个边长是6分米的正方形,我们也铺成了一个边长是12分米的正方形,相信同学们还能铺成其他很多不同的正方形,那么为什么横着铺2块和4块,都能铺成正方形,而横着铺3块却不能铺成正方形呢?请你仔细观察,试着找一找,铺成的正方形的边长与长方形墙砖之间有什么联系呢?

横着铺两块的时候,长是6分米,有2个3,我们也可以说6是3的倍数,像这样铺3行,就是6分米,有3个2,6也是2的倍数,铺出的正方形边长6分米既是3的倍数,又是2的倍数,也就是它们的公倍数。同样,12分米既是2的倍数,也是3的倍数,也就是2和3的公倍数,所以它们能铺成正方形。那么,是不是边长是2和3的公倍数就能铺成正方形,如果不是它们的公倍数就不能铺成正方形了呢?

我们一起看看,横着铺3块墙砖时的情况。横着铺3块,长9分米,是3的倍数,但不是2的倍数,所以另一条边不可能铺出9分米。因为9不是2和3的公倍数,所以不能铺成正方形。

看来只要铺成的正方形的边长是2和3的公倍数,也就是铺成的正方形的边长是长方形墙砖长与宽的公倍数的时候,就一定能铺成正方形。

2和3的公倍数有6、12、18……所以铺成的正方形的`边长可以是6分米,12分米,18分米,还有很多不同边长的正方形,其中最小公倍数6分米,就是铺成的正方形的最小边长。

回顾与反思:回忆整个解决问题的过程,我们发现解决这类问题的关键是把用整块的长方形墙砖铺成正方形的问题转化成求公倍数和最小公倍数的数学问题,同学们,你们掌握了吗?

3、实际应用(练习十七5—12题、生活中的数学)

【P71—6】请你认真读一读,题目中有哪些重要的数学信息呢?李阿姨要给花浇水,月季每4天浇一次,君子兰每6天浇一次。李阿姨5月1日给月季和君子兰同时浇了水,她想让大家帮忙算一算,下一次再给这两种花同时浇水应是5月几日?同学们一定想到了,4和6的公倍数是同时浇花的间隔天数,因为是求“下一次同时浇花”,所以要取最小的间隔天数,也就是4和6的最小公倍数。4和6的最小公倍数是12,所以下一次同时给两种花浇水应是5月13日。

【P71—7】请大家先读题,找出重要的数学信息。好,我们一起来看,这些学生可以分成6人一组,也可以分成9人一组,都正好分完。说明这些学生的总人数是6和9的公倍数。又已知总人数在40以内,所以是求40以内6和9的公倍数。40以内6和9的公倍数有18、36,所以这些学生的总人数可能是18人,可能是36人。

【P72—10】接着请大家把教材翻到72页看第10题,自己先尝试独立完成,看看大家能不能将这个生活中的实际问题转化成数学问题。相信大家一定做出来了。每隔几分钟发车即每过几分钟发车,3路车每过6分钟发一次车,5路车每过8分钟发一次车,在它们同时发车后,第二次同时发车过的分钟数就是6和8的最小公倍数。因为6和8的最小公倍数是24,所以两路公共汽车过24分钟第二次同时发车。

【P72—11】请大家认真读题,解答出第1个数学问题后,再尝试提出其他数学问题并解答。我们一起来看,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,女孩跑一圈用6分钟。如果爸爸妈妈同时起跑,至少多少分钟后两人在起点再次相遇,这里的“至少”就是取最小的间隔时间,也就是求3和4的最小公倍数,3和4的最小公倍数是12,所以爸爸妈妈至少12分钟后在起点再次相遇。此时,爸爸跑了12÷3=4圈,妈妈跑了12÷4=3圈。根据题意,我们还可以提出爸爸和女孩,妈妈和女孩以及三人同时起跑,至少多少分钟再在起点相遇,此时分别跑了多少圈。请你检查一下,自己做对了吗?

【P72—12】第12题是一道带*号的选做题,让我们一起挑战一下吧!36可能是哪两个数的最小公倍数?请你先试着找一找,看看你能找出几组。

我们知道当两数成倍数关系时,较大的数就是它们的最小公倍数。所以任意一个36的因数,除36以外,与36组合,两个数的最小公倍数都是36。我们先写出36的所有因数,即1、2、3、4、6、9、12、18、36。去掉36,其他因数与36组合,可以得到8组。此外,两个数不成倍数关系的还有4组,分别是4和9,4和18,9和12,12和18。

【生活中的数学】我们一起看“生活中的数学”,用洗衣液手洗衣物时,一盆5升30摄氏度左右的温水,可以加入《最小公倍数例3》教学设计瓶盖20毫升的洗衣液调匀。相机可以用《最小公倍数例3》教学设计秒的快门速度曝光,美国科学家研制出了粗细只有头发丝的《最小公倍数例3》教学设计的太阳能电池。数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述,课后,同学们可以继续寻找生活中与分数有关的例子,还可以寻找生活中公倍数、最小公倍数的实际应用。

4、课后作业:71页第5题、第8题,72页第9题。

这节课就上到这里,同学们,再见!

最小公倍数说课稿 篇4

我今天说课的题目是小学数学五年级下册最小公倍数。根据新课标的理念,对于本节课我将以教什么、怎么教、为什么这样教为思路,从教材分析、教学目标、教学方法、教学过程等几个方面加以说明。

首先,先谈一谈我对教材的理解

这节课是以公倍数、最小公倍数概念为主的教学,它是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。

其次我谈一下学情,小学生的动手欲望较强,学生认识数的概念时更愿意自主参与,自己发现。但是,学生个人的解题能力有限,因此通过小组合作的学习方式能更好地激发他们的数学思维,通过交流获得数学信息。

根据新课标的标准,教材特点、学生的实际,我确定了如下的教学目标:

知识与能力目标1、理解公倍数、最小公倍数两个概念的意义。2、初步了解两个数的公倍数和最小公倍数在现实生活中的应用。过程与方法目标经历公倍数和最小公倍数的认识过程,体验观察思考,迁移发现,理解运用的学习方法。情感态度与价值观在学习活动中,体验探索知识过程的乐趣,激发学习的兴趣,培养学严谨认真的学习态度。

基于以上对教材、学情的分析和教学目标的设立,我确定本课的重点和难点是:

教学重点理解公倍数和最小公倍数的概念。教学难点掌握公倍数和最小公倍数的概念。

考虑到小学生的现状,基于本节课的特点,我主要采用了以下的教学方法:情境教学法、活动教学法

德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则教给学生如何发现真理。

在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:

动手操作法、分析归纳法、合作探究法。

下面,主要谈谈对本课教学过程的设计

首先进入的是导入新课部分,在这一部分采用设置情景导入法,让同学们都拿出课前准备的一些长3厘米、宽2厘米的长方形纸片以及边长为6cm、8cm的正方形纸片。并且提出问题:请同学们用这些长方形纸片去铺一铺你手中的这两个正方形,看看是否可以正好铺满吗?

并向同学们解释正好铺满的意思就是无空隙,不重叠。当同学们动手操作之后发现用长3厘米、宽2厘米的长方形纸片只能铺满边长为6cm的正方形纸片,而不能铺满边长为8cm的正方形纸片。此时引导学生思考为什么用长3厘米、宽2厘米的长方形有时可以正好铺满正方形,有时却不能,这是怎么回事呢?

学生通过思考及同桌交流以后能够答出如果正方形边长是2的倍数,又是3的倍数时,这个正方形就可以被正好铺满,否则就不能。这时我就顺势总结:像6、12、这些数,既是2的倍数,又是3的倍数,这就是我们今天这节课要学习的内容公倍数。这样做可以激发学生主动学习的兴趣,拓展学生的思维,培养学生的动手操作能力。

接下来进入的是讲授新课部分,在这一部分我主要设计两个环节:

第一环节:归纳总结出公倍数的概念,针对导入时的情景,继续向学生提问:用长3厘米、宽2厘米的长方形还能够正好铺满哪些正方形纸片。这个问题比较简单同学们能够容易得出答案。通过这个实例让同学来总结归纳概括出公倍数的概念。这样有利于培养学生的概括、归纳能力,这也是新课标理论所要求的。

接下来进入第二环节:合作探究环节

在这一环节,主要是让学生通过合作探究寻找两个数的公倍数的方法,这样做有助于培养学生的合作探究能力。

把全班同学分成三个学习小组,以小组学习的方式思考并回答问题:找一找6和9的公倍数有哪些?其中最小的公倍数是几?讨论结束后,每个小组派代表来和大家分享他们的成果。在讨论过程中,我会巡视,时刻注意其讨论动向,也会时不时加入他们的讨论当中。

通过讨论之后,学生得出找公倍数的方法可能有以下几种:

第一组:依次分别列举6和9的倍数。先依次列举6的倍数和9的倍数,圈出它们公有的倍数,这样就找到了6和9的.公倍数是18、36、54等,其中最小的一个18就是6和9的最小公倍数。(板书)

第二组:只依次列举6的倍数,再从6的倍数中圈出9的倍数,圈出的这些数就是6和9的公倍数。

第三组:只依次列举9的倍数,再从9的倍数中圈出6的倍数,圈出的这些数就是6和9的公倍数。

最后教师和同学们一起总结:找这两个数的公倍数可以先分别有序列举两个数的倍数,再找出两个数公有的倍数。也可以先列举其中一个数的倍数,再从中找出另一个数的倍数。

接下来进入的是巩固练习环节,为了加深对公倍数和最小公倍数的认识,给出集合图,让学生把50以内6和8的倍数、公倍数分别填在下面的圈里,请一位同学到黑板上作,其它同学在自己练习本上作。作完以后学生互评。

最后是小结、拓展延伸环节

通过提问:同学们,通过今天这节课学习,你有哪些收获呢?伴随着同学们的回答结束今天的课程。