分数墙教案
微文呈现整理的分数墙教案(精选5篇),汇集精品内容供参考,请您欣赏。
分数墙教案 篇1
教学目的:
1、理解和掌握分数的基本性质。
2、理解分数的基本性质与商不变规律的关系。
3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。
4、应用分数的基本性质解决简单实际问题。
5、正确认识、处理变与不变的的辨证关系。
教学重点:
掌握分数的基本性质。
教学难点:
抽象概括分数的基本性质。
教具学具准备:
多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。
教学步骤:
一、1、复习旧知
除法与分数之间有什么联系?
被除数÷除数=被除数
除数
1)、你能用分数表示下面各题的商吗?
1÷2=()3÷6=()5÷10=()4÷8=()
2)、根据400÷25=16在□里填数:
(400×4)÷(25×4)=□
根据360÷90=4在□里填数:
(360÷□)÷(90÷10)=4
(2)你是怎样想的?(回忆除法中商不变性质)
商不变的性质内容是什么?
3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?
2、激趣引入:和尚分饼
从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的`一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:143/6
你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16
这几个分数真的相等吗?让我们做个实验来证明。
3、操作感知:
(1)请同学们拿出三张大小相同的长方形纸条。
通过实验、观察、分析、讨论
①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;
②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;
③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来
然后看涂上颜色的部分是不是一样大。这说明了什么?
引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。
二、比较归纳揭示规律
比较这三个分数分子和分母,它们各是按照什么规律变化的?:
1、说说这三个分数的意义。
2、总结规律:
(1)从左往右观察:
a、观察手中第一、第二张纸条。
发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4
b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?
板书:1/2=1×3/2×3=3/6
c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。
(2)引导学生观察、讨论:
从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?
学生边回答边板书:3/6=3÷3/6÷3=1/2
2/4=2÷2/4÷2=1/2
并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。
3、抽象概括归纳性质
(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。
(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。
分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。
分数墙教案 篇2
1、把2/3和10/24化成分母是12而大小不变的分数。
引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?
学生独立完成。
四、多层练习巩固深化
1、巩固练习:
口答
1/5=()18=()/6
2/3=()24=()/12
6/10=()/20=3/()=18/()
2、深化练习:
下面每组中的两个分数相等吗?为什么?
3/5和615和1/5
3、应用练习:
判断:
(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()
(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()
(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()
4、发散练习:你能写出和4/6相等的分数吗?
在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。
5、游戏:请找找我的'好朋友
五、全课总结
提问:我们这节课学习了什么内容?分数的基本性质是什么?
通过今天的学习,你认为学习分数的基本性质有什么作用?
分数墙教案 篇3
【教学内容】
?义务教育课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习
【单元主题分析】
本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的.。
【复习目标】
1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的意义、计算及应用。
2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。
3、培养学生良好的复习习惯。
【复习重点】
能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。
【复习难点】
使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.
【教具准备】
课件、练习纸
【复习过程】
一、回顾整理、汇报交流
师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!
(生小组交流)
师:我选了几份有代表性的,想看看吗?
(学生汇报)
①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面
师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!
二、练中梳理、沟通联系
师:请看(出示线段图) 什么图?仔细看,你能看明白什么?
生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!
师:它可以用一个怎样的数量关系式来表示呢?
生:b× =a
师:你能把它改写成两个除法算式吗?
生:a÷b=
a÷ =b
师:为什么这样改?(积÷因数=因数)
所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的运算。
师:想一想,两个数相除还可以用什么形式表示?
生:比。
师:什么是比?
师:那么a比b是 ?
生:a:b=
师: 是什么?(比值)
它还可以表示a与b的比是3:5
在a÷b= 这儿它是商
看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?
(生说,然后示课件)
有没有区别呢?(运算、数、关系)
师:既有密切的联系,又有本质的区别!
师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?
(生计算)
师:说一说,怎么算的?
师:除以 ,算的时候变成了乘 ,依据什么?
分数除法的计算方法是什么?(生说)
乘除数的倒数,这样,就把分数除法的计算转化成了乘法。(示转化)
师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?
(生有认为是,有的认为不是)
师:究竟是不是呢?(算算看)
生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是
师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=
↓ ↓
为什么前项×3 后项也×3 ?
这是通过化简比,得出结果还是3:5
问:化简比依据是什么?
对比:谁能说一说:求比值与化简比有什么不同?
生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。
而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。
师:其实,求比值的计算中,常常会用到分数除法的计算方法。
三、解决问题,提升方法
1、根据线段图提简单的分数除法问题
师:如果a是六年级女生有300人 ,你能提出什么问题呢?
生:六年级总数?
师:可以吗?还可以怎么提?(示题)会做吗?
生:300÷
师 为什么用除法?题目的关键是哪句话?
生:女生是男生的
师:根据条件,可以写出什么数量关系式?
生:(男生)× =300
师:现在知道为什么用除法了吗?
师:还可以用什么方法?
生: 〤=300
2、稍复杂的分数除法问题
师:如果把条件换一换:女生比男生少 怎么做呢?
(生做,然后汇报交流)
师:对比这两题,你有什么发现?
生:男生是单位“1”,未知 。
师:求单位“1”可以用什么方法?
生:可以用方程,也可以用除法。
师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。
3、比的应用
师:我把题目全换一换(示投影),变成了什么问题?
生:比的问题
师:能直接列式吗?
生:列式解答
师:把比转化成分数
问:为什么不用方程?
生:单位“1”知道,是800人。
师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。
小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!
四、综合练习,自我检测
师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?
(分发练习纸,根据完成情况反馈交流)
(分析错因,大多是计算出错)
小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!
五、课堂小结
师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!
附练习题
一、 填空
1、8:10= =40÷( )=( )(填小数)
2、20千克:0.2吨的比值是( ),最简整数比是( )。
二、计算
÷2 ÷
×8÷ ( ÷
三、应用
一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?
分数墙教案 篇4
学习内容:
课本第76页例2及“做一做”第2题。
学习目标:
1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重难点:
我能应用分数的基本性质解决简单的实际问题。
学习过程:
一、导入新课
二、合作探究、检查独学
1.自学教科书76页例2:把和化成分母是12而大小不变的分数。
(1)思考:①要把2/3化成分母是12的分数,我们就要把分母()乘()才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该()。最后分子分母都乘了个(),就把2/3化成了分母是12的分数()。
②要把10/24化成分母是12的分数,我们就要把分母()除以()才能得到12;分数的基本性质告诉我们,分数的.分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该()。最后分子分母都除以了个(),就把10/24化成了分母是12的分数()。
(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。
2.小组代表展示、汇报
3.总结升华
4.我能行:完成课本第76页“做一做”第2题。
分数墙教案 篇5
一、教学目标设计 认知目标:
1、利用“分数墙”对分数的大小比较和分数加减计算进行复习整合。 2、对相等的分数进行深入的、直观的探究。 情意目标:
2、 学生能以积极的态度完成课堂活动。
3、 学生能与小组同学交流、协作一起发现问题、解决问题。 能力目标:
4、 培养学生的独立的思考、创造的能力,学会“观察、发现、转化”等思考方法。
5、 培养学生在小组活动中的协作能力。 二、教材内容及重点、难点分析
“分数墙”是学生直观认识分数的常用直观模型,是通过“几个几分之一就是几个几分之几”对分数(包括真分数和1)进行分解而得到的直观模型。“分数墙”可以看作是分数的线型模型的推广,为学生进一步将分数进行抽象,将分数表示在数轴上做准备。通过分数墙这个直观的模型,可以将分数的大小比较(同分母或同分子)和分数的加减计算(同分母)知识进行复习,同时再现相等分数、分数与分数单位间的关系,并作直观研究。教学流程设计为:观察→发现→操作→再发现。
教学重点:通过分数墙,对分数大小比较、分数加减和相等分数进行复习与整合。
教学难点:通过“相等的分数”和“转化思想”探索解决问题。 三、教学对象分析
对“分数墙”的学习,是在学生对分数有了初步认识基础上展开的,加之“分数墙”的直观性,学生对相同分母分数的大小比较、加减计算更易把握;另外对1/2、1/3、1/4、1/5?与1的关系一目了然,便于对相等分数作进一步的探究,加深对分数的理解。本节课以探索为主线,从问题的提出,就让学生
主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的`个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的信息和方法,本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
四、教学策略及教法设计
1、情境导入。创情境导思维使学生乐学。因此在教学中我有意识地利用软件呈现有趣美丽的分数墙,吸引学生注意,激发学生思维。
2、直观演示法。用直观演示的方法更能使小学生容易理解和记忆,让学生乐于学习。这节课利用MP_lab直观展现分数墙中的数学知识,帮助学生理解知识的内在联系。
3、操作法。MP_lab为学生探索搭建平台,学生自主利用MP_lab搭建分数墙,在操作和思考的过程中完成了对知识的建构。
3、引导式教学。在教学中教师要激发学生的学习动机,使之对学习产生浓厚的兴趣,师精导、生巧学,以学论教,扶放结合。由学生小组合作共同探索问题的解决方法时,当学生想出各种不同的方法时,引导学生自己比较方法的异同点,并进行归纳,同时在此基础上懂得根据条件选择合适的方法来解决问题。
五、教学媒体设计
课前,运用MP_LAB软件制作好一面简单的分数墙以供学生观察。MP_LAB制作积木资源库,为学生提供搭建分数墙的操作平台
返回首页