返回首页
微文呈现 > 百科 > 经典方案 > 正文

比例尺的意义教学方案

2025/11/21经典方案

微文呈现整理的比例尺的意义教学方案(精选4篇),汇集精品内容供参考,请您欣赏。

比例尺的意义教学方案 篇1

教学目标

(一)知识教学点

感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

(二)能力训练点

①培养学生发现问题、分析问题、解决问题能力;

②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

③辩证唯物主义的初步渗透

教学重点 比例尺的应用。

教学难点 比例尺的实际意义。

教学过程

一、设置教学情境,感受比例尺

(一)画画比比

1、 估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、 丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、 画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、 质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

[评析:照样子画黑板是同学们美术课上再熟悉不过的举动,但以此为本节课的开始,让学生在不知不觉中体会到了比例尺,实为教者的匠心之笔!]

5、挑两个黑板图(一个画得不像一个画得较像)出示:

a) 评价:

①谁画得更像一点?

②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)

b) 师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

图上长7厘米,长缩小:3507=50 图上长5厘米,长缩小:3505=70

宽1.5厘米,宽缩小:1501.5=100 宽2.5厘米,宽缩小:1502.5=60

c) 点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。

[评析:实践出真知!让学生分析画得像与不像使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。]

(二)再画再比

1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

2、课件展示准确的平面图:

3、请你帮老师算算长和宽分别缩小多少倍?

图上长3.5厘米缩小:3503.5=100 宽1.5厘米缩小:1501.5=100

4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

[评析:从画黑板提出问题到比比谁画得像分析问题再到如何画得更像解决问题。教者均是置学生于熟悉的生活背景下,感受并理解比例尺意义,体现了数学的生活性。]

二、结合实际,理解比例尺

(一)说一说

①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。

③图A、图B长和宽比例尺各是多少?分别表示什么?

小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

④用自己话说说什么叫做比例尺?怎样计算比例尺?

小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

(二)算一算

①下图是我校周边的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

②从1﹕10000这一比例尺上,你能获取那些信息?

板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

[评析:比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生说一说、算一算,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。]

三、联系实际,应用比例尺

(一)求图上距离

1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?

①独立思考,试试看,如感觉有困难小组内小声讨论。

②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?

方法一:400米=40000厘米 方法二:400米=40000厘米

4000010000=4(厘米) 400001/10000=4(厘米)

方法三:10000厘米=100米 方法四:用比例解(略)等等

400 100=4(厘米)

小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。

③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)

[评析:怎样计算图距和实距?教者一改以往根据比例尺计算方法***套公式(图距=实距比例尺;实距=图距比例尺)的做法,也一改教材中烦琐的比例解法,而是借助于学生对比例尺的多角度理解,不把知识点讲死,让学生灵活的选择解决方法,很好的`体现了新课标的理念以人为本,即让不同的学生学不同的数学,让不同的学生得到不同的发展。]

2、练一练:

区委东北是我区闹市区十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)

3、画一画:

①请准确地画出教室前黑板的平面图。(怎样画才算准确?)

②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。

(二)求实际距离

1、 西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?

①独立思考;②合作交流;③讲评算理。(略)

2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?

[评析:用学生熟悉的生活场景大厂区各地名,采取学生感兴趣的活动画地图联系实际应用比例尺意义计算图距和实距,使学生对数学倍感亲切,感觉数学就在我们身边,突出的体现了数学的生活性。]

(三)新课延伸

1、 南京距大厂40千米,画在这幅图上要画多少厘米?

①独立列式计算(400厘米)。

②要画400厘米,你有何感觉?(太长画不下)

③画不下怎么办?(调整比例尺)

④说说你的调整方案?

[评析:一石激起千层浪!在矛盾冲突中培养学生发现问题、分析问题、解决问题的能力,同时达到使学生跳出大厂看比例的目的。]

2、请拿出标有南京上海的地图,找出比例尺并说说意义。

①同座位间合作算出实际距离。

②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?

2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。

[评析:很有创意!采访老师,就地取材增加课的参与度;学生下位采访,体现课的开放性,培养学生解决实际问题能力的同时培养学生的交际能力。使课堂教学内容得到了再延伸!]

四、课堂总结,回顾比例尺

[总评:本节课循着一根知识主线比例尺的意义与应用,引入新知别出心裁,探究新知有章有法,练习设计富有创意;同时循着一根能力主线培养学生解决实际问题能力,无论是哪个环节的例子都来源于学生熟悉的生活,重视学生的独立探究与合作讨论相结合。同时多次运用多媒体辅助教学,充分体现了以教师为主导,学生为主体,训练为主线的严禁课堂教学结构,使学生学的轻松,学有成效。]

比例尺的意义教学方案 篇2

教学内容

六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。

教学目标

1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:

理解比例尺的意义。

教学难点

根据比例尺求图上距离和实际距离。

教具准备

多媒体课件一套。

教学过程:

一、问题的情景:

1. 出示邮票。问:你能同样大小的把它画在图纸上吗?

让同学们画一画,再拿出邮票的长,比一比,怎么样?

归纳:(同样长)得:图上的长和实际的长的比是1:1。

2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?

如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

3. 让生猜想:(出示学校平面图)图上操场的长和实际长的`比,还会是1:1吗?大约是几比几?

4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

板书:比例尺

二、问题解决:

5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

6. 小组回报设计方案,教师选择以下四种方案。

(1).用9厘米表示9米

(2).用4.5厘米表示9米

(3).用3厘米表示9米

(4).用1厘米表示9米

7. 说说以上方案是图上距离比实际距离缩小了多少倍?

算一算,每幅图 图上距离和实际距离的比。

(1).9厘米9米=9900=1100

(2).4.5厘米9米=4.5900=1200

(3).3厘米9米=3900=1300

(4).1厘米9米=1900

8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺 或 图上距离

实际距离

9. 讨论汇报:上面四幅图,比例尺是多少图最大?

比例尺是多少图再小?为什么?

10. 练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

11. 比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

12. 比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

三、问题的应用:

根据比例尺的关系式,求实际距离。

(1)出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,x=105000000

105000000厘米=1050千米。

答:上海到北京的实际距离大约是1050千米。

(2)分析讲述:

根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

(先设x,再根据比例尺的计算公式列出方程。)

(3)图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

(4)怎样设x,教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

(5)尝试练习第57页试一试。

河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

比例尺的意义教学方案 篇3

教学目标

1. 通过学习,初步了解比例尺的意义。

2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。

3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。

4.情感、态度、价值观:体会数学与日常生活的密切联系。

教学重、难点:

(1)理解比例尺的含义。

(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教具学具

小黑板、课件、备一幅地图

教学过程

一、导入新课

同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:

1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?

2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。

教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。

揭示课题:今天我们一起来学习比例尺的知识。

二、学习新课

1.学习比例尺的意义。

(1)动手操作

请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。

学生们计算并汇报,集体订正。

一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:

1、用几厘米表示8米和7米。

2、你设计的方案是图上距离比实际距离缩小了 多少倍?

3、算一算、每幅图的图上距离与实际距离的比。

同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。

请学生重复说一遍什么叫做比例尺。

板书:图上距离:实际距离=比例尺

请每个人算一算自己所画的教室的平面图的.比例尺是多少。

(2)观察地图,自由交流。

课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的地方?

引导学生充分发表意见,教师辅助讲解:

1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。

(3)学习不同的比例尺。

课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?

在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?

补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。

(4)学习例1。

课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的单位不同该怎么办?

板书:图上距离:实际距离

=1cm:50km

=1cm:cm

=1:

请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。

2.知识运用。

(1)即时训练。

学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。

集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

(2)拓展训练。

课件出示下列四个问题:

1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。

2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)

3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?

4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。

请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。

3.教学例2。

多媒 图上距离 15cm 实际距离 450km

回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。

比例尺的意义教学方案 篇4

教学目标:

1.使学生理解比例尺的含义,能正确说明比例尺所表示的具体意义。

2.认识数值比例尺和线段比例尺,能将线段比例尺改成数值比例尺,将数值比例尺改成线段比例尺。

3.理解比例尺的书写特征。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教学过程:

一、引入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的`图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

二、教学比例尺的意义。

1.什么是比例尺(自学书上内容,学生交流汇报)

出示图例1

在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2.介绍数值比例尺

让学生看图。

我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

3.介绍线段比例尺

还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。

4.介绍放大比例尺

出示图例2

在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。