圆的面积教学反思
微文呈现整理的圆的面积教学反思(精选5篇),汇集精品内容供参考,请您欣赏。
圆的面积教学反思 篇1
教学内容:人教版六数上第66页、67页
教学目标:
1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.
2.会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆
教学过程:
(课前游戏)
猜谜:前面有一片草地(打一植物)
草地上来了一群羊(打一水果)
草地上有一群羊,突然来了一群狼(打一水果)
师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。
一、 导入:
师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)
二、 认识圆的面积:
1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?
生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:
1.(出示正方形与圆的课件)
师:我们先用一个简单的办法来猜想一下圆面积的`公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多
少呢?
生:大正方形的面积是4r,小正方形的面积是2r。
2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?
生:圆的面积比大正方形的面积小,比小正方形的面积大。
师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?
生:3r。
师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。
四、 小组合作、拼摆。
1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?
生:底*高。S=ah。
师:还记得平行四边形的面积计算公式是如何推导出来的吗?
是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。
师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222
2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?
生:三角形或者等腰三角形。
师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!
提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。
学生开始小组合作。
3. 汇报合作结果。
师:你们都拼成了什么样的图形?上台来展示一下吧。
生分组上台展示。
要求学生汇报自己是怎样拼的,拼成了一个什么图形。
师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?
生:分得越多,越接近长方形。
五、 面积计算公式推导:
1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!
2.师:找到答案了吗?
生:长是πr,宽是r。
师:长方形的面积呢?请同学们在练习本上写一写。
那圆的面积呢?也写一写,读一读吧。
学生汇报。师板书。
3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?
4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?
生:半径。
师:知道什么也可以求出圆的面积呢?
生:直径、周长。
师:下面我们就来试一试吧!
六、 巩固练习。
1. 平方的口算练习。
1 2 3 4 5 6 7 8 9 10 20 3022222222222 2
2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。
3.圆形花坛的直径是20米,求圆形花坛的占地面积。
学生先汇报思路,再在练习本上完成。
4. 树干的周长是125.6米,求树干的横截面积是多少?
学生先汇报思路,再在练习本上完成。
七、 总结:
师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?
圆的面积教学反思 篇2
这节《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
一.明确概念:
圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示课本上的圆形花坛,让学生直观感知绿色线条的轨迹是条封闭的曲线,它的长度是圆的周长,绿色曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵。
二.以旧促新
明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,为新知的“再创造”做好知识的准备。根据需要选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。并强调在推导的过程中你发现图形的什么变了?(形状)什么没变?(面积),转化前后两个图形之间有什么关系?
根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。这个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。
三. 转变图形
根据发现,把圆等分成若干等份,小组合作,动手摆一摆,转化成学过的平面图形。让学生把课前把附页中的图剪下拼成的图拿出并观察它像什么图形?为什么说“像”平行四边形(或长方形)?让学生发表自己的意见,充分肯定学生的观察。并利用课件展示分别等分成8、16、32份拼成的图形,并一再强调在推导的过程中你发现圆的什么变了?(形状)什么没变?(面积),转化前后两个图形之间有什么关系?还展示学生的三个拼图,引导学生闭上眼睛,如果分成64、128等份呢?让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的长发形就愈像,就愈接近,完成另一个重要数学思想———极限思想的渗透。
四.公式推导
长方形的面积学生都会计算:s=ab。引导学生观察长方形的长和宽与圆有什么样的关系:发现a=c/2 =πr b=r, 长方形的面积=圆的面积,从而推导出S=πr×r =πr2,强调r2表示两个r相乘,并利用课件展示它们的关系。
通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。
五、实践活动。
在学生已能把已知圆的'r、d求面积的基础上设计这一环节的活动:2人小组合作拿出课前准备好的圆形纸片或圆柱形物体、绳子、尺子.想办法测量出你所需要的数据,求出圆形纸片或圆柱形物体横截面的面积是多少?通过动手操作,小组合作的形式完成本活动,通过参与学生的很多,发现学生的办法很多,有通过对折找直径、半径再求面积的,也有两人合作用绳子围住圆片一周,再用尺子量出圆的周长,通过周长求圆的半径,再求面积,我都肯定了学生的方法,同时我特别表扬最后一种方法,并说明理由:在生活中求树干的横截面的面积等圆柱形横截面的面积的物体时这种方法适用。
六、善用表扬
在课堂教学过程中,表扬有着十分重要的作用。因为从某种意义上说,几乎人人都有一种希望别人肯定、称赞自己的心理(尤其是这些小学生们,这种心理更为强烈),这种心理一旦得到满足,便会形成愉悦的情感,产生巨大的精神力量,使自己那些受别人肯定和称赞的言行迅速的得到强化。因此,我在上课时都是想方设法从学生的言行中找到值得肯定和赞许的东西,不失时机地加以表扬,尽量满足学生的这种心理,以形成良性的教学循环。
总之,这节课以这样的教学形式进行教学,从课后学生完成的课后作业的正确率很高就可以知道效果非常好。但因为学校的场地及教学设备在课前临时做了很大的调整,所以我和学生都不适应,课堂活动显得拘束了很多,很多环节都放不开,在时间上我掌握得也不是很理想,介于此,我还在课前的预设(教案)中进行一些调整。
圆的面积教学反思 篇3
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,设计了以下几个环节:
一、导学激趣,渗透“转化”
本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解
当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。
这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的.面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。
另外,在进行圆的面积推导时,给周长怎样求面积这一环节,由于没注意,在求半径时让学生用C÷2÷∏,而没有及时地纠正用C÷∏÷2,这在教学上显得不够灵活,今后在这方面要注意细心。
总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。
圆的面积教学反思 篇4
圆的面积是小学六年级数学下学期教学的重点内容。我教小学毕业班已经十余年了,自然这节课我讲的也不下十余次了,以前在偃师市讲过,也在洛阳市也讲过。虽然每次都反映不错,可我总觉得不太满意,总觉得这节课的容量少了点,今年我决定改变以往的教学方法,增加课堂容量。
以前我是这样安排课堂结构的:谈话引入圆面积后,让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,然后教师动画演示,从而得出采用转化图形的方法,把新的图形转化成以前学过的图形来研究,使学生从中受到启发,进而想到把圆形也转化成以前学过的图形来研究。然后通过学生的动手操作、自主探究、合作交流,最后自己推导出圆面积计算公式。让学生在课堂上把8等份圆、16等份圆,先剪一剪、再拼一拼,在学生动手操作后,教师再动画演示32等份圆、64等分圆、128等份圆所拼成的图形更接近长方形。最后想一想:所拼近似长方形的长和宽与圆的什么有关系(近似长方形的长相当于圆周长的一半,宽相当于圆的半径),由长方形面积公式继而推导出圆面积公式。圆面积公式推导出来后,时间已所剩不多,学生运用公式解决问题的时间很少。环形的面积计算需要下一个课时进行。
今年我经过思考,决定这样做:让学生提前预习,小组内3、4号同学做8等份圆,1、2号同学做16等份圆,两人所做圆形的`大小一样,所涂的颜色也一样,其中一个用剪刀剪好,一个不剪,以备上课时使用。
今年的课堂结构调整为:一开始由本节主题图引入,已知每平方米草皮8元钱,一个圆形草坪需要多少元钱?要解决这个问题就要求出圆的面积,由此引入新课。紧接着出示本节课的学习目标。接下来依然让学生回忆以前学过的平行四边形、三角形、梯形面积公式的推导过程,渗透转化思想,使学生自然想到把圆形也转化成以前学过的图形来研究。然后让学生拿出自己制作的学具,先俩俩合作(1、2号合作,3、4号合作),再四人小组合作,在课桌上拼图。通过几次拼图发现,所拼近似长方形的长近似于圆周长的一半,宽近似于圆的半径。各小组展示后我用演示4等份圆,8等份圆、16等份圆、32等份圆、64等份圆……所拼成的图形,学生迅速发现,把圆等分的份数与多,拼成的图形越接近长方形,自己很快就推导出圆面积计算公式。这样就节约了大量的时间来进行公式实际运用的练习了。本节课学生不但会计算圆的面积,还会计算环形的面积……这样环环相扣,学以致用,学生学习积极性极高,既熟练的掌握了公式,又有了自主解决问题的成就感,圆满完成本节的学习目标。
不过这节课,也暴露出了一些问题:例如学生在计算平方的时候,出错较多,6的平方,应该是36 ,很多学生错误的把它算成12 ,这说明我对学情分析还不透彻,再例如学生的书写格式也不够规范等,所有这些还有待今后进一步提高。
圆的面积教学反思 篇5
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
这几天一直对圆的进行研究,使学生认识到研究曲线图形的'基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
一、从圆的周长到圆的面积体验其中不同
本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
通过上面计算平行四边形面积的方法,探究圆的面积,如何计算圆的面积,学生有点不知所措。现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。通过学生观看一个个的图片,从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再在这个长方形让学生中找到圆的周长,从4等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。
反思,在这一节课中,我只是将圆面积推导过程,只是用学具的形式展现给同学们看,如果能让同学自己动手做一下,将一个圆平均分成32份,再自己拼一拼。这样学生对于圆的面积的知识认识会更加深刻。
在这一节课中,我总觉得缺乏学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。只是通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,在自己地引导中推导出圆的面积计算公式。学生思维在交流中虽有碰撞,在碰撞中发散,在想象中得以提升。但总觉得不够。在以后这一类的教学中,应该让思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在细节的设计还要精心安排。
返回首页