《轴对称图形》教案优秀
微文呈现整理的《轴对称图形》教案优秀(精选5篇),汇集精品内容供参考,请您欣赏。
《轴对称图形》教案优秀 篇1
苏教版小学数学三年级下册《轴对称图形》第一课时公开课
教学设计
时间:20xx.5.5 执教人:方万胜 轴对称图形(第一课)
【教材分析】
本课教学苏教版《义务教育课程标准实验教科书数学》三年级(下册)第56~61页的内容,内容分属于空间与图形领域。《数学课程标准》关于“空间与图形”部分特别强调了内容的现实背景,强调关注学生的生活经验和活动经验。在日常生活中,有很多的轴对称图形,这充分体现了数学知识与生活的密切联系,通过观察生活中的对称,使学生体验“对称美”。通过学生动手创作轴对称图形,在创作中感知轴对称图形的特点,激发学生的兴趣。
【学情分析】
本节的教学对象是小学中年级学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的的`内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,让学生自主探索,在探索中发现,在探索中学习。
【教学目标】
1.使学生联系生活中的具体物体,通过观察和动手操作,使学生初
步体会到生活中的对称现象,初步认识轴对称图形的一些基本特征。并初步知道对称轴。
2.使学生能根据对轴对称图形的初步认识,在一组实物图案或简单平面图形中正确识别轴对称图形;能用一些方法“做”出一些简单的轴对称图形。
3.使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
【教学重点】
理解轴对称图形的特征。
【教学难点】
掌握判别轴对称图形的方法。
【教学准备】:
多媒体课件、剪刀、彩色笔两支、彩色纸。
学生预习:
1.预习书本56-61页,在看书的过程中,把你认为主要的画出来,并反复读一读,想一想是什么意思?
2.在看书的过程中,如有不认识的图形,请上网查一查或向他人询问,知道它的名称,并写在图下
3.生活中哪些物体也具有对称的性质,请你写在横线上。
4.剪下书本第115页的天安门城楼图、飞机图和奖杯图,并对折,把你的发现写下来。
5.搜集一些轴对称的图形,打印出来,并能作简单的说明。
6.搜集一些著名建筑的图片,打印出来。
【教学过程】
一、引入新课
1.今天老师带来了几个物体,我们一起来看看!(出示:天安门、飞机、奖杯)
问:请同学们仔细观察,这些物体的外形都有什么特点? (对折后两边相同、对称、都是轴对称图形)
预设1:左右两边相同。像这样两边大小、形状完全相同的物体,我们可以说是对称的。那怎么来验证呢?(对折)
这些物体都是立体图形,我们不方便直接对折。不过我们可以把它们画下来,得到一些平面图形。现在可以对折了吗?
预设2:轴对称图形(对称)。那你说说你对轴对称图形(对称)的了解?
1.你是怎么理解对称的?怎么验证?(对折)这些对称的物体都是立体图形,我们可以把它画下来,得到一些平面图形。看,现在这些图形还对称吗?(对称)板书:图形
是不是所有的图形都是对称的?它们又是怎么对称的?我们又怎么来证明?今天这节课,我们就一起来研究一下。
2.你怎么理解轴对称图形?(学生的回答可能很零碎)
好,那接下来我们就一起来验证一下!
二、教学例题
1.课前让大家剪下了这三个图形并对折了,现在能把你的发现和大
家说一说吗?
生交流。(两边是一样的、左右两边大小一样、对称、有一条线、折横、对称线等)
(1)两边的大小一样、对称、完全重合。
问:你是怎么折的?比如说这个天安门图(左右对折)飞机图?(上下对折)
有没有不同的折法?那我可不可以这么折?为什么?(不能完全重合、两边不一样大小)也就是说,轴对称图形对折后两边要——完全重合。
(2)对折后是以前的一半。问:为什么只能看到一半?(两边都重合了)
(3)它们都是轴对称图形。那你是怎么判断的?都是这么折的吗?有没有不同的折
法?我这样折可以吗?为什么?
(4)折横、有一条线。若学生说不到,师可这样引导:我们再来看这几个图形,对折后都留下了什么?(一条线——这条线我们叫折痕)那这条折痕所在的直线我们叫——对称轴。对称轴用点划线来表示。画时,先画线,再画点,点和线间隔画。我们可以竖着画,也可以横着画。(黑板上演示)
那你能尝试找出其中一个图形的对称轴并用彩色水笔画一画吗?开始。
生在对折的纸上找一找并画一画。
反馈。画得正确吗?下面画对的同学请举手!真棒!
下面,老师要看看我们同学有没有掌握了。出示图——汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽章图。(想2)
你能判断出下面哪些是轴对称图形吗?
交流反馈:这个是轴对称图形吗?为什么?
这个呢?
重点讲解:香港区徽章图。外面完全重合了,里面的图案没有完全重合,所以——不是轴对称图形。
2.教学试一试
轴对称图形其实对我们来说并不陌生,在我们学过的平面图形中也有一些。
出示:你能判断哪几个图形是轴对称图形吗?
交流反馈:哪些是轴对称图形?为什么?(对折后能完全重合)怎么对折的?(上下、左右)有几种折法?(2种)
正方形、长方形:怎么对折的?还有别的折法吗?(还能怎么折?) 师:不管怎么折,只要对折一次后图形能完全重合的,都是轴对称图形。
正五边形是吗?为什么?
着重提出:平行四边形为什么不是?
生拿出平行四边形折一折,小组讨论后,指名说理由。
问:你的想法是怎样的?谁愿意来折一折?
《轴对称图形》教案优秀 篇2
优秀教案片段:
(师利用多媒体课件出示一些轴对称图形)
师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?
生:这些图形的两边都一样。
生:这些图形都是对称的。
师:你们想自身动手做一个漂亮的对称图形吗?
生:想。
师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。
设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。
(剪图形活动结束)
师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。
生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)
师:请一位小朋友说一说你做的是什么图形?你是怎么做的?
生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。
师:你知道利用工具来做,真不简单,还有谁愿意说?
生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。
师:为什么要先把一张纸对折?
生:因为假如不对折,剪出的图形两边就不一样大了。
(仍有同学手高高举起)
师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?
设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。
师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?
生:对折后,两边的图形重合了。
师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?
生:不一样。
师:哪些地方不一样?
生:(指着老师手中的枫叶图形)
这个图形对折后两边的图形不一样大,一边大,一边小。
老师手中的图形对折后,两边的图形没有重合完,下边还多出来一局部。
师:(趁机问)你们手中的图形对折后,是怎样重合的?
生:全部重合完了。
师:有没有多出来的局部?
生:没有。
师:有没有缺少的局部?
生:没有。
师:(指着同学的图形)这种重合就叫做完全重合。
师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。
设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。
师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?
生:(中间有1条线)
师:这条线是怎么得来的?
生:刚才我们对折的时候留下来的折痕。
师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?
生:对折的`。
师:假如我们不沿着这条直线对折会怎么样?
生:两边的图形就不能完全重合了。
师:这说明这条线怎么样?
生:很重要。
师:你能给这条线取个名字吗?
生:中间线。
师:为什么把它叫做中间线?说说你的理由好吗?
生:因为这条线在这个图形的正中间,所以我把它叫做中间线。
师:还有谁想说?
生:对折线,因为这条线是我们对折后留下来的。
生:重合线,因为沿着这条线对折两边的图形就完全重合了。
师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?
(课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)
设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。
《轴对称图形》教案优秀 篇3
教材内容
人教版义务教育课程标准实验教科书二年级上册P68。
教材、学生分析
对称是大自然的结构模式之一,它广泛存在于我们的日常生活中,存在于人类创建的文明史中,具有多种变换形式。学生对于对称现象并不很陌生,例如,许多艺术作品、建筑设计中都体现了对称的风格。教材借助于生活中的实例和学生的操作,判断哪些物体是对称的,找出对称轴,并初步地、感性地了解轴对称图形的性质,但并不要求掌握“轴对称图形”的名称。
教学目标
1、了解生活中的对称现象,认识轴对称图形的一些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。
2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新等能力。
3、在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美。
设计理念
1、改变学生的学习方式,以自主探索、合作交流、动手实践为主要学习方式,促进学生的自主学习。
2、充分尊重学生的生活经验和认知基础,引导学生联系实际,感悟“生活数学”理念。
3、将数学欣赏融入教学中,感受数学美。
教学重点
认识轴对称图形的基本特征。
教学难点
设计制作轴对称图形。
设计流程
一、理解感知“对称”
1、首次探底:今天这节课我们要来研究图形王国中的一种现象──“对称”。你听说过对称吗?说说你印象中的对称。
2、再次探底:出示组图(蝴蝶、狮子脸、椰树、枫叶),这些图形你觉得哪些是对称的?跟同桌说说为什么。
3、交流反馈:你是怎样想的,说说你的理由?(预设①:多数学生能判断正确──你们是怎么看出来的?;预设②:少数学生能判断正确──展开生生交流,可分成正反两方争辩,陈述理由)
4、引出验证:你能想个办法来证明蝴蝶、狮子脸、枫叶的两边一样,只有椰树的两边不一样吗?(预设:学生代表上台分别折一折蝴蝶、狮子脸、椰树、枫叶)
5、师小结:像这样对折后两边完全重合在一起的图形,就叫做对称图形。(板书)刚才同学们把图形对折后留下的这条折痕,我们把它叫做这个对称图形的对称轴。(在黑板上用点划线范画对称轴)你能找出剩下图形的对称轴吗?你觉得对称轴有什么特点?
6、即时生成资源并共享:在教室里找找有没有对称图形,指指它们的对称轴。全班互动交流评价。
7、欣赏生活中的这些物体的形状,指指它们的对称轴在哪里。
(意图:教学伊始,开门见山地结合课题进行探底,把握学生认知起点,以四幅色彩鲜艳的图片为纽带,唤醒学生的生活经验,再以“动手折一折”为依托,引出对称图形及对称轴的概念,并及时拓展到生活中去寻觅与欣赏,以学生现场找到的对称图形为资源,利用这些生成资源进行对称概念和对称轴概念的巩固。在这样的数学教学中,学生真切地感受到了数学资源和数学实践无处不在。细想之下,整个教学过程不就是一个从“生活经验”提升到“数学原型”的过程吗?而这样的'过程又是在师生民主平等的对话和学生多样化活动中进行的。)
二、实践深化“对称”
1、讨论:刚才我们找出了很多对称图形,也欣赏了很多对称图形,老师也想来动手制作一个对称图形,你觉得我可以制作一个什么图形?……
2、探究方法:师从学生回答中采纳一条意见,“大家能指挥老师做一做吗?”……(预设①:多数同学会──集体指挥教师后请学生小结方法;预设②:个别同学会──请同学上来演示,师生共同小结方法。)
3、你想自己动手试一试吗?学生个体独立活动,看在相同的时间内,谁制作的对称图形最有创意、最漂亮。
4、展示生成资源:把你的作品先露一半让大家想想可能是什么图形?再全部展开贴在黑板上,指指它们的对称轴(生生互动交流、评价)。
(意图:在这一教学环节中,主要借助给老师出主意、动手做一做、互动评评议议的教学策略,让学生带着知识走进实践,不着痕迹地得出了制作对称图形的方法,主张通过实践使学生学会运用知识,发展思维。这里将教学的重点圈定于学生自主探求制作方法、创造对称图形之中,并对这些生成资源加以利用,感悟数学的应用性和数学美。)
三、练习内化“对称”。
1、出示常见图案。判断,如果是对称图形的,画出对称轴。(独立完成,反馈)
2、出示长方形、正方形、圆形,折出对称轴(动手之前先进行猜想:你觉得他们可能有几条对称轴?动手实践验证)。
(意图:这里主要借助于画一画的方法实现数学知识的内化和提升。如此,不但培养了学生实践应用的意识,而且有助于“猜测、验证”及感受“无限”的数学思想方法的渗透。)
四、总结延伸:
1、通过今天的学习,你学会了什么?你觉得学了对称图形后有什么用处呢?其实,对称还有很多种类型,以后我们将继续去学习。
2、数学百花园:欣赏中国的剪纸艺术和世界各地的建筑艺术,进一步感受对称美。
(意图:课已接近尾声,这里的两个环节目的在于梳理数学知识、升华数学知识,催生学生对生活中对称艺术的赞美,实现从轴对称图形──生活中其它对称现象的跨越,学生在背景音乐的渲染下,又一次经历了灿烂文化的熏陶。)
《轴对称图形》教案优秀 篇4
《 轴对称图形 》教学设计
教学内容:
北师大版义务教育课程标准实验教科书《数学》三年级下册第二单元第13—15页《轴对称图形》
教学目标:
1. 通过生活中的事例,使学生初步体会什么是轴对称图形。
2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。
3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意
识和实践能力。
教学重点:
1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
2. 能正确判断轴对称图形。
教学难点:画出轴对称图形。
教学准备:课件剪刀 彩色卡纸 平行四边形纸
一、 情境导入
1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。
课件出示不对称“脸图”问:“这张脸可爱吗?”
生:不可爱!
课件演示脸图由不对称变为对称,问:现在呢?
生:可爱!
师:看来,人人都喜欢美丽的东西。今天老师给大家带来了一些美丽的图片,请欣赏。
2.图片欣赏 (课件出示对称图形图片)
看完图片后师问:这些图片中的图形有什么特点?(指名回答)
学生可能会说,它们两边完全一样。
教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)
二、 探究新知
1.认识轴对称图形
师:在我们的生活中,还有很多事物都是对称的。
看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)
生:想!
师:老师和你们来一场比赛,看谁剪的又快又好,开始!
师生同时动手剪,完成后教师把自己剪的贴在黑板上。
请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。(指导学生演示方法)
问演示学生:你怎么让大家知道你剪的小松树是对称的呢?
生:我把它对折(生边说边演示)(师板书:对折)
师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?
生:左右两边完全重合(师板书:完全重合)
师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。(出示概念,补充课题:轴对称
图形)
生齐读概念
2.认识对称轴
师:把你们的对称图形打开,观察图形中间有什么?
生:有一条直直的折痕。
师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)
出示感念,生齐读。
师演示并带领学生画对称轴(强调用虚线)
我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!
三、 实际应用
1.看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)
生应用所学知识判断,教师点评。
师:这位新朋友留给大家的印象非常深刻,我们很容易就发现了它,你们能把这些对称图形的对称轴画出来吗?
生动手画对称轴,师巡视指导,完成后订正。
师:轴对称的图形不单单生活中有,在我们天天接触的数字、汉字、字母中也同样存在,看,这儿还有轴对称图形吗?
2.找出下列图形中的轴对称图形(课件出示课本14页第1题)
生找出轴对称图形,并说说每个图形的对称轴在哪儿。
师:聪明的同学们能找轴对称图形,聪明的你们会画轴对称图形吗?
3.出示课本14页第3题
师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。
生在剩下的'两个图形中选择一个动手画,完成后展示成果,全班点评。 师:同学们既能找,也能画,那肯定也能判断了。请看(课件出示)
4.下面哪些图形中的红线是对称轴?
师:看来同学们已经知道了很多轴对称图形,
(出示导课时的“脸图”可爱
的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?
生找身边的轴对称事物。
四、全课小结
我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学
们谈谈通过这节课的学学习,你有什么收获?
生:畅谈收获。
师:你们想知道老师有什么收获吗?(想)
老师今天收获了一份愉快的心情!
板书设计:
完全
轴对称图形 对称轴 重合
《轴对称图形》教案优秀 篇5
教学目标:
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:
经历发现长方形、正方形对称轴条数的过程。画平面图形的对称轴。
课前准备:
小黑板、学具卡片。
教学活动:
一、复习导入
出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)
二、教学例题
1、谈话:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。学生折纸画图,教师巡视,发现不同的折法。
2、指名到投影仪前展示自己的折法和画法。提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3、谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。通过操作我们发现长方形只有两条对称轴。
4、出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。让学生充分发表意见。如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的`吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。学生说怎样画对称轴,教师画,画成如右形状,并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
5、让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?
三、教学“试一试”。
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学“想想做做” 。
1、做第1题。
(1)指名读题。提问:这道题让我们先做什么,再做什么,最后做什么?
(2)让学生各自按题目要求操作。
(3)提问:哪几个图形是轴对称图形,各画了几条对称轴?(可补充说明:四条边相等的四边形是菱形,它有2条对称轴)
2、做第2题。
(1)让学生自己读题。
(2)提问:题中的图形都是轴对称图形吗?第几个图形不是轴对称图形,为什么?
(3)看一看每个轴对称图形有几条对称轴,在书上画出来。(4)展示部分学生的答案,共同评议。(从左往右三个图的对称轴分别有3、4、5条)
3、做第3题。
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出三个对应的顶点再连线)
4、做第4题。
(1)谈话:先仔细观察题中的四个图形各是什么图形,谁来说一说?(指名回答)如果学生说第一个图形是三角形,要追问:是什么样的三角形?第三个图形学生可能会说是五边形,谈话:这个图形不是一般的五边形,它的五条边都相等,五个角也都相等,它是正五边形。同样的,第四个图形是什么图形?
(2)让学生各自画每个图形的对称轴,能画几条画几条。
(3)展示部分学生的答案,共同评议。
(4)提问:每个图形各画了几条对称轴,你发现了什么?(各边相等、各角也相等的图形,对称轴的条数与边数相等)
5、做第5题。
让学生自己制作,然后在小组内观赏评议,每组找出最佳作品,在班内展览。
五、全课总结
提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?
返回首页