《反比例函数的图像》教学反思
微文呈现整理的《反比例函数的图像》教学反思(精选4篇),汇集精品内容供参考,请您欣赏。
《反比例函数的图像》教学反思 篇1
反思一:二次函数的图像和性质教学反思
我的优点主要包括:
1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。
我的不足之处表现在:
1、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。
2、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
3、合作学习的有效性不够。学生在a>0的情况下能得到a越大开口越小,a<0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的.过程还给学生,问题在分组讨论中得以共同解决。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
这是我的一节课,是我对这节课的一个小结,希望对我以后的课堂能提供帮助。
反思二:
在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。
本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义.建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程.体验用函数思想去描述、研究变量之间变化规律的意义.
接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。
《反比例函数的图像》教学反思 篇2
这节课主要是通过学生自主探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历了一次自主获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法。自主探究学习是近年来兴起的一种全新的教学方式,它主要着力于学生的学,鼓励学生以类似科学研究的模式,进行主动探索。它把目标指向学生的创新能力、问题意识,以及关注现实、关注人类发展的意识和责任感的培养,而不仅仅是知识的传播和掌握.其有利于改变学生学习数学的方式,它强调“做中学”,力图通过学生“做”的主动探究过程来培养他们的创新精神、动手能力和解决问题的能力。而立足于课堂,深入钻研教材,是数学课堂教学中实施探究性学习的基础。
带着这样的思路,我设计了《反比例函数的图象与性质》教案。对教学中体会较深的内容体会如下:
首先,为达到自主探究、培养学生的动手能力、观察能力和问题意识的教学目的,教师要努力为学生创设必要的情境。人们的学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“教学情境设计”设计成由若干个有一定逻辑顺序的问题。即通过复习反比例函数的定义——各自举一个反比例函数,同桌互相检查——画出它的图象。使他们经历观察实验、猜测发现、交流反思等理性思维的基本过程,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。
其次,如何把复杂抽象的数学问题变为具体化、形象化的问题,让学生在学习时充满激情,过程中充满乐趣,在活跃的课堂气氛中,渐入佳境。在教学的过程中,我把信息技术和数学教学的学科特点结合起来,利用多媒体的动画演示让学生通过观察、探究发现反比例函数图象的性质,从而把复杂抽象的数学问题变为具体化、形象化的问题,让学生成为课堂的真正主角,教师从课堂的主宰者变为引导者。让学生来发现、归纳和总结反比例函数图象的性质规律。这样有利于提高学生的学习积极性。我们知道“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。利用多媒体信息技术图文并茂、声像并举、能动会变、形象直观的特点为学生创设各种情境,可激起学生的各种感官的参与,调动学生强烈的'学习欲望,激发动机和兴趣。这充分说明了多媒体信息技术在教学中的作用。
再次,关注教学过程,注意抓住一切有利的教育机会,对学生的疑问和解决问题能力进行引导和培养。比如在做能力测试题第
(1)已知反比例函数y=(3k-6)x,如果在每个象限内y随着x的增大而减小,那么k的取值范围是______时,学生回答的答案是(k>2),是正确的,但进一步提问为什么时,答案却是因为当k=2时,3k-6=0不符合题意,此时我就进一步提出k<2行吗?解决此问题的关键是什么?从而培养了学生解决问题能力
不足和遗憾之处:
(1)反比例函数的图象可以进一步地利用有理数的乘法及各象限坐标的特点来验证说明。
(2)因为时间关系,最后没有进行总结。
反思二:
刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图像,二是由图像得出反比例函数的性质。后者只需观察即可直观得出,显然画反比例函数的图像是本节课的重点,从教学目标的角度分析,本节课更应侧重于画图像技能的培养。
准确、美观的画出反比例函数的图像,也应是本节课的难点,原因之一画函数的图像第一步是列表,列表时取哪些点?不取哪些点?取多少?密集程度如何?对刚接触反比例函数的学生来说,都是必须解决好的问题,否则划出的图像必然是五花八门,错误百出。原因之二,学生画函数图像的经验源于正比例函数和一次函数,由于二者的图像均为直线,所以有可能对画反比例函数图像造成一定的干扰。
本节课在难点的处理上,我首先在列表时,直接给定了x的取值,这就把列表时应有的困惑化为无形,学生只需由y=4/x计算y值而已。其次,学生在坐标系中描完点后,我运用多媒体及时矫正,把问题分散,同时又为下面的连线清除了计算上的障碍。在此一句具有启发性的问话:这些点是否在一条直线上?怎样连接这些点?把学生分散而不着边际的思维集中在正确的轨道上来,图像的正确率自然大大增加。紧接着跟上矫正:同学们所画图像与老师图像不太一致,请对照老师正确的图像小组讨论,由于前面层层铺垫,加之有正确的图像作比较,学生很容易发现自己画图中的错误,最后概括总结注意点水到渠成。但仔细想想在学生对答如流的表面下,却掩盖了本应解决好的问题,这些问题暂时不暴露,就永远不会暴露吗?这对画图像技能的培养必然带来负面影响,在这里就出现了一个很现实的问题:教学中作为老师的我们,是掩盖问题还是暴露问题,答案是显然的。但我对这节课在以下方面还是很满意的:如列表时直接给定x的取值,连线时启发性的问话,使学生思维定向,避免了错误的不断尝试,使学生尽快步入正确学习的轨道,节省了学习时间等等……在教学中给我的感觉明快顺畅,但是这与教学中质疑解惑并不矛盾,有效教学的标志不仅是顺畅,更重要的是对问题的深入思考,最终达到技能的形成和情感目标的实现。
回忆以往我在处理这个问题时的方法:列表、描点、连线由学生独立完成,然后老师提出问题,画反比例函数应该注意什么?列表时注意什么?为什么有的点取得密集?有的点取得疏松?描点时注意什么?连线时注意什么?用折线段连结所描的点可以吗?等等
《反比例函数的图像》教学反思 篇3
《反比例函数的图像》教学反思
作为一位到岗不久的教师,我们需要很强的教学能力,通过教学反思可以有效提升自己的教学能力,怎样写教学反思才更能起到其作用呢?以下是小编为大家收集的《反比例函数的图像》教学反思,欢迎阅读,希望大家能够喜欢。
《反比例函数的图像》教学反思 篇4
《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的方法解决问题,培养学生科学的态度与精神.借助于多媒体课件,让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握.
在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。主要反映在以下几个方面。 第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例
函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的.本质“特征”,使“数”、“形”之间达到统一。于是,在教学中,我们同样关注了对“解析式”的分析。第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。
不足与改进:在整个课堂教学过程中,教师围绕主题、有针对性的提出问题,学生小组合作探讨问题得出结论,然而部分小组在合作探究上还有所欠缺,讨论的不够激烈完善。我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征;在画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?” 留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能
体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
返回首页