返回首页
微文呈现 > 短文 > 教学教案 > 正文

《乘法分配律》优秀公开课教案

2025/12/22教学教案

微文呈现整理的《乘法分配律》优秀公开课教案(精选5篇),汇集精品内容供参考,请您欣赏。

《乘法分配律》优秀公开课教案 篇1

教学目标

1.使学生理解乘法分配律的意义.

2.掌握乘法分配律的应用.

3.通过观察、分析、比较,培养学生的分析、推理和概括能力.

教学重点

乘法分配律的意义及应用.

教学难点

乘法分配律的反应用.

教具学具准备

口算卡片、投影仪.

教学步骤

一、铺垫孕伏

1. 口算.

(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

2. 用简便方法计算.(说明根据什么简算的)

25×63×4

3. 师生比赛,看谁算得又对又快.

20×5+5×80 (1250+125)×8

让学生说明是怎样算的?

二、探究新知

1.导入:

刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).

2.教学例6:

(1)出示例6:演示课件“乘法分配律”出示例6 下载

(2)引导学生观察每组的两个算式.

(3)教师提问:从上面的例子你发现了什么规律?

(4)学生明确:每组中的两个算式都可以用等号连接.

教师板书:(18+7)×6=150

18×6+7×6=150

(18+7)×6=18×6+7×6

(5)教师出示:20×(15+9)=480

20×15+20×9=480

20×(15+9)=20×15+20×9

学生分组讨论:每组中算式所表示的意义.

(6)反馈练习:按题要求,请你说出一个等式.(投影出示)

(__+__)×__=__+__×

教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

引导学生观察:等号左右两边算式的规律性

启发学生回答:首先是等号左边两个数的和同一个数相乘.

其次是等号右边两个加数分别同一个数相乘再把两个积相加.

最后是等号左右两边的'两个算式相等.

3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

4.反馈练习:

横线上能填几?为什么?

(32+35)×4=__×4+__×4

(62+12)×3=__×__+__×__

教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

根据练习学生从而得出: (a+b)×c=a×c+b×c

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

5.教学例7:演示课件“乘法分配律”出示例7 下载

(1)出示例7:102×43

启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

教师板书:

(2)出示9×37+9×63

引导学生观察:这类题目的结构形式是怎样的?有什么特点?

教师提问:根据乘法分配律,可以把原式改写成什么形式?

根据学生的回答教师板书:9×37+9×63

=9×(37+63)

=9×100

=900

学生讨论:这样算为什么简便?

师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.

③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.

(3)揭示教师算得快的奥秘

上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?

三、巩固发展 演示课件“乘法分配律”出示练习 下载

1. 练习十四第1题.

根据运算定律在□里填上适当的数.

(43+25)×2=□×□+□×□

8×47+8×53=□×(□+□)

3×6+6×7=□×(□+□)

8×(7+6)=8×□+□×□

2.在横线上填上适当的数.

(1)(24+8)×125=__×__+__×

(2)25×(20+4)=25×__+25×__

(3)45×9+ 55×9=(__+__) ×__

(4)8×27+73×8=8×(__+__)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

3.把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×8 24×5+24×8

(3)20×(l+15) 0×17+20×15

(4)(40+28)×5 40×5+ 28

(5)(10×125)×8 10×8+125×8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4.选择题:

(1)28×(42+29)与下面的( )相等

①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

(2)与a×8-b×8相等的式于是( )

①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

5.练习十四第4题,投影出示.

一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?

四、课堂小结

今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

五、布置作业

练习十四第3题.

用简便方法计算下面各题.

(80+8)×25 35×37+65×37

32×(200+3) 38×29+38

《乘法分配律》优秀公开课教案 篇2

一、教学目标:

(一)知识目标。

1、过探索活动,进一步体会探索的过程和探索方法。

2、通过探索活动,发现乘法分配律,并用字母进行表示。

(二)能力目标。

1、学习过程中,培养学生的探索意识和探索精神。

2、探索、交流过程中,培养学生发现问题、提出问题的能力。

3、培养学生观察、比较、抽象、概括能力。

(三)德育目标。

体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。

二、教学重点:

理解乘法分配律。

三、教学难点:

乘法分配律的应用。

四、教学方法:

1、猜测法。

2、验证法。

五、教具准备:

课件。

六、教学过程:

(一)导课。

应用乘法结合律进行简算。

2745= 8(725) = 3425=

(二)学习新课。

1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?

2、学生汇报:有的说100块,有的说90块。

3、详细汇报

生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)

生2 :我也发现有90块,因为有10行瓷砖,每行9块。

生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。

4、请大家观察这些例子的左右两边,有什么特点?

生1:从左到右是相同因数乘不同因数的和。

生2:从右到左是相同因数分别乘不同的.因数,再将它们的积加起来。

5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C

表示三个数,你能写出乘法结合律吗?

6、(A+B)C=AC+BC叫乘法的分配律。

(三)巩固练习。

1、填一填。

35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )

2、拓展练习。

运用学的规律,将计算过程变得简便些。

201950= 632547=

(四)全课总结。

这节课,你学到了那些知识?会用乘法分配律简便运算吗?

(五)布置作业。

第49页练一练第2、3题。

《乘法分配律》优秀公开课教案 篇3

一、教学内容:

乘法分配律教材第36页的例3

二、教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

3、发挥学生主体作用,体验探究学习的快乐。

三、教学重点:

指导学生探索乘法的分配律。

四、教学难点:

乘法分配律的应用。

五、教学准备:

小黑板、口算题、例题、练习题等。

六、教学策略:

本节课的学习我主要采取自主探究学习,把问题教 学法,合作教学法,情境教学法等结合运用于教学过程中。使学 生自主、勇敢地体验尝试和实践活动来进行综合学习。

七、教学过程:

(一)、设疑导入

同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?( 简便)

接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

(二)、探究发现

1.猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

这道题算得怎么不如刚才的快啊?(它和前面的题目不一样)

好,我们来看一下它与前面的题目有什么不同?

这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

为什么这样算哪?

你是怎么知道的?你知道什么是乘法分配律吗?

你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

2.验证。

师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的'两个数的和同一个数相乘都可以这样计算?

(学生计算,并汇报。)

……

师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

《乘法分配律》优秀公开课教案 篇4

教学内容

教科书第64页例6,第64页“做一做”中的题目和练习十四的第1、2题。

教学目的

使学生理解并掌握乘法分配律,培养学生的分析推理能力。

教学重难点

乘法分配律

教具、学具准备

教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。

教学过程

一、复习

教师出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,计算每一题时,第一个学生回答“先算什么”,第二个学生回答“再算什么”,第三个学生回答“接下来算什么”。

二、新课

1.教学例6。

教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

“图中一共有多少个正方形?你是怎样想的?”先请一个学生回答,教师把学生所列的算式写在黑板上。

“还有别的算法吗?你是怎样想的?”再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

(5十3)×4 5×4十3×4

教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

“这两个算式的计算结果怎样?”

“这两个算式的计算结果相等,说明这两个算式有什么关系?”学生回答后,教师指出:

这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

(5十3)×4=5×4十3×4

“等号左面的算式是什么意思?”(5与3的和乘以4。)

“等号右面的算式是什么意思?”(5与3先分别乘以4,然后再把两个积相加。)

教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

教师:下面我们再看两组算式,先看:(18十7)×6 18×6十7×6

“左面的算式是什么意思?”(18与7的和乘以6。)

“右面的算式是什么意思?”(18与7分别乘以6,再把两个积相加。)

“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)

“算一算右面的算式等于什么?”(两个积分别是108和42,它们的和等于150。)

教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。

“这两个算式相等,说明18与7的'和乘以6等于什么?”(说明18与7的和乘以6等于18与7先分别乘以6再相加。)

教师:我们再来看两个算式 20×(15十9) 20×15十20×9

“先来计算一下这两个算式各等于多少?”

“两个算式都等于多少?”

“这两个算式相等,说明20乘以15与9的和等于什么?”

2.进行抽象概括。

教师指着上面的算式提问:

“仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?”多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)

教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

“再看等号右面的三个算式有什么相同的地方?”学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

“等号左面与等号右面相等是什么意思?”学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书“乘法分配律”。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。

教师:如果用 表示三个数,乘法分配律可以写成下面的形式:

(a+b) ×c=a×c+b×c

“等号左面(a+b) ×c表示什么意思?”(表示两个数的和同一个数相乘。)

“等号右面a×c+b×c 表示什么意思?”(表示把两个加数分别同这个数相乘,再把两个积相加。)

三、巩固练习

教师在黑板上写算式:(200十3)×27,提问:

1.“这个算式中是哪两个数的和乘以哪个数?”

“根据乘法分配律,这个算式等于哪两个乘积的和?”

教师在黑板上再写算式:185×27十15×27,提问:

“这个算式中是哪两个数分别乘以哪一个数?”

“根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?”

2.做第64页“做一做”中的题目。

先让学生读题,再想一想每个方框里应该填什么数。

“在(32十25)×4中,两个数的和指的是什么?同一个数相乘指的是哪个数?”

“根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?”

“第一小题的方框里应该填什么数?”(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)

“第二小题应该怎样填?根据什么运算定律?”(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)

四、作业

练习十四的第l、2题。

《乘法分配律》优秀公开课教案 篇5

教学目标:

1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

2、能够运用乘法分配律进行简便运算。

3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

教学重、难点:

理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

教学过程:

一、情境导入:

出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?

二、探究发现,归纳总结。

(一)借助图形,感知模型。

1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?

请把想象的图画出来。交流学生作品后,出示

60米 30米

20米 《乘法分配律》教学设计

原面积 增加的部分

2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。

(二)借助图形,抽象模型。

1、出示几何图形:用两种方法解决问题。

60米 ( )米

20米 《乘法分配律》教学设计

原面积 增加的部分

刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?

2、交流:你想增加几米?怎样算?结论是什么?

师相机板书。

引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的'猜测进行计算、验证、自主完成任务单项2。

( )米 ( )米

( )米《乘法分配律》教学设计

原面积 增加的部分

4、交流:你是怎么猜测和验证的?结论是什么?

教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c

讨论:这个规律在数学上叫——?(板书课题——乘法分配律)

(三)借助图形,逆用模型。

1、出示计算题:

(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。

引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

2、46×25+54×25、98×20+98×80

请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

(四)借助图形,拓展模型。

1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?

你们能解决这个问题吗?试着算一算。

反馈交流:说说你们是怎么解决的?

我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?

谁能用字母来表示这个新规律呢?

师板书:(a-b)×c=a×c-b×c

三、科学练习: