平行四边形教案
微文呈现整理的平行四边形教案(精选4篇),汇集精品内容供参考,请您欣赏。
平行四边形教案 篇1
教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:
多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格平行四边形底底边上的高面积
长方形长宽面积
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的'底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑P79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)、两个平行四边形的高相等,它们的面积就相等( )
(2)、平行四边形的高不变,底越长,它的面积就越大( ) 。
(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2 比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
平行四边形教案 篇2
【回顾与思考】:
活动一:
准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.
(1)你得到了怎样的四边形?与同伴交流一下
(2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?
(3)平行四边形的定义: 的四边形叫做平行四边形.
平行四边形 连成的线段叫做对角线
如图,四边形ABCD是平行四边形,
记作” ”
活动二:(1)观察你所拼的`平行四边形中,有哪些相等的线段、相等的角?为什么?
(2)平行四边形的性质:平行四边形的对边
平行四边形的对角
几何语言:
∵四边形ABCD是平行四边形(已知)
∴AB= ,BC= ( )
∠A = ,∠B = ( )
【知识应用】:
1. □ABCD中,AB=3,BC=5,则AD= CD= 。
2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。
3. 如图:四边形ABCD是平行四边形。
(1)边AB、BC的长度
(2)求∠D、∠C度数。
【当堂反馈(小测)】:
1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.
2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;
3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.
4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.
5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。
6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的度数
【巩固提升】:
1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。
2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。
3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。
4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )
A. 105° B. 115° C. 125° D. 65°
5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( )
A. 80° B. 90° C. 100° D. 110°
6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )
A、88°,108°,88°B、88°,104°,108°
C、88°,92°,88° D、88°,92°,92°
7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1
8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。
9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数
10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?
平行四边形教案 篇3
实用的平行四边形教案集锦九篇
作为一名无私奉献的老师,总归要编写教案,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!下面是小编精心整理的平行四边形教案9篇,仅供参考,大家一起来看看吧。
平行四边形教案 篇4
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、平行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四边形的.面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?
⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?
板书设计:
平行四边形面积的计算
返回首页