《一元一次不等式》说课稿
微文呈现整理的《一元一次不等式》说课稿(精选4篇),汇集精品内容供参考,请您欣赏。
《一元一次不等式》说课稿 篇1
早上好!我是来自临夏县三角中学的xx,今天我说课的课题是人教版七年级数学下册第九章《一元一次不等式组》中一元一次不等式组第一课时,我主要从教材分析与处理、教法学法和手段、教学过程的设计、板书设计、设计说明五个方面来进行说课。
一、教材分析与处理
1、教材的地位与作用
本节主要学习一元一次不等式组及其解集的概念,并要求学生会用数轴确定解集。它是一元一次不等式的后续学习,也为下节和今后解决实际生产和生活问题奠定了坚实的知识基础。另外,整个学习过程中数轴起着不可代替的作用,处处渗透着数形结合的思想,这种数学思想会一直影响着学生今后数学的学习。因此,一元一次不等式组是初中数学的一个重要内容。
2、教学目标
根据以育人为本、以学生发展为本、以学生终生学习为本的理念,依据本节课的教材以及课程标准,我确定本节课的教学目标如下:
(1)知识目标:理解一元一次不等式组相关概念;会利用数轴解简单的一元一次不等式组;理解并掌握一元一次不等式组解集的四种情况。
(2)能力目标:通过利用数轴来寻求不等式组的解集、及探讨交流不等式组解集的四种情况,培养学生的观察能力、分析能力、及归纳总结能力。
(3)情感目标:让学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。
3、教学重点、难点及关键
根据教材的地位与作用、课程标准及学生的实际情况,教学重点确定如下:
重点:一元一次不等式组及其解集的含义,一元一次不等式组的解法。
由于不等式组的解集是组成它的几个不等式的解集的交集,一般地,当这个集合是由无限个实数构成时,不可能一一列举出来。而数轴上的点是与实数一一对应的,所以借助数轴就能直观地把不等式组的'解集表示出来。因此,我确定难点和关键问题如下:
难点:理解一元一次不等式组解集的含义,关键:利用数轴求不等式组中各不等式解集的公共部分。
二、教法、学法和手段
《课标》指出:学生是学习的主题,所有的数学知识只有通过学生自身的“再创造”活动,才能纳入其认知结构中,才可能成为一个有效的和用得上的知识。同时,本节课的教学对象是七年级学生,逻辑思维较弱,但是他们的好奇心强,具有一定的探究能力。因此本节课在教法上力求体现教师的“启发引导”,在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造。同时为了加强教学的直观性,突出重点,突破难点,我充分利用多媒体辅助教学。
三、教学过程设计
(一)创设情境,新知探究
★活动一:由销售笔记本问题,引入课题
我为学生准备笔记本,由学生扮演售货员,我扮演顾客,通过销售笔记本的活动来解决问题,从而得出一个不等式组。这就自然而然引出了课题。
设计意图:从实例引入,要求学生能综合运用已有的知识,独立思考、自主探索,从类比的角度让学生说出一元一次不等式组的概念。
★活动二:由自主学习活动,引出概念
我出示了本节课的教学目标和自学指导,让学生带着问题去自学教材内容,并尝试完成自学指导提出的问题。这时,教师应给学生充足的时间,让学生去思考、探索。然后通过提问的方式,检查学生自学情况,从而也就引出了一元一次不等式组的概念和一元一次不等式组的解集的定义。为了巩固新知,检测学生对概念的理解程度,我先设计了一组判断题,以加深学生对一元一次不等式组概念的理解。接着,我又在数轴上展示了一组简单的一元一次不等式组的解集,并强调了“公共部分”的含义。
设计意图:在学生的自主学习过程中,培养了学生自学能力,让学生掌握基本概念的同时,还可以体会到,让静止的数轴动起来,使学生对不等式组的解集理解的更深刻,突出了重难点。同时让学生了解到求一元一次不等式组的解集时,关键是利用数轴,渗透了数形结合的数学思想;使学生在探索和解决问题的过程中获得体验、得到发展;充分发挥了学生的主体作用,使学生在轻松的氛围中掌握知识。
(二)总结规律,得出口诀
一般:两个一元一次不等式组成的不等式组的解集情况有以下四种情况
一元一次不等式组解集图示 口诀
x>–1 x>2x>2大大取较大
X< –1 x<2X<–1小小取较小
x>–1
x<2–1
X<–1
x>2无解
大大小小解不了
给出四个基本的不等式组,先让学生通过数轴确定解集,从直观上了解不等式组解集的基本情况;然后引导学生总结出口诀、达到会说理解会运用。教师应注意口诀中的每一个大字与小字代表的是符号还是数?
为了突破难点,我设计了如下问题:
1、借助数轴确定下列不等式组的解集
2、你发现了不等式组的解集有什么规律吗?在这个探究过程中,让学生自己动手画数轴求解集,并以小组为单位开展交流、讨论、探究,共同解决问题,总结规律。此设计的目的是让学生构建数学知识的过程是师生双方交互作用的过程,教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本数学知识与技能,数学思想与方法,获得广泛的数学活动经验,经过师生互动、生生互动,最后师生共同总结口诀:同大取大;同小取小;大小小大中间找;大大小小解不了。
设计意图:引导学生借助数轴直观地掌握这四种有代表类型的解集,突出“公共部分”的探讨,从而加深学生对不等式组解集的理解;更重要的是学生区分出这四种不同的情况、理解口诀后,以后做题中,能否结合数轴更快更准地找出不等式组的解集! 口诀的使用对难点突破起了有效的作用。
(三)反馈交流,巩固新知
为了让学生巩固所学知识,解决相关问题,我设计了两个选择题......
设计意图:要求学生能够综合运用已有的知识;
(四)学以致用,一试身手
解不等式组
给学生安排了这个基本的不等式组,教学中先要求学生独立完成,教师巡视指导;然后让学生与同伴交流解决问题的过程和遇到的问题,规范解题过程。
设计意图:我设计这个例题,是为了让学生掌握解一元一次不等式组的一般步骤,进一步加深学生对不等式组的解集以及以及解不等式组的认识。让学生认识到,数轴的直观表示有助于准确的确定不等式组的解集。
(五)归纳小结,整体感知
“这节课我们学到了什么?”,教师鼓励学生畅所欲言,说出本节课自己的体会、收获;最后教师补充总结。
设计意图:通过小结,为学生创造交流的空间,培养学生的归纳概括能力。再次巩固了数轴来确定一元一次不等式组解集的过程!突出了重点!又从能力、情感、态度等方面关注学生对课堂的整体感受,在轻松愉快的气氛中体会收获的喜悦。
四、板书设计
左中右三部分:
左(一)
1、一元一次不等式组
2、一元一次不等式组的解集
3、利用数轴,找公共部分。
中(二)
1、四种结果
2、口诀内容:大大取较大 小小取较小 大小小大中间找 大大小小解不了
3、做题过程、注意事项
右(三) 实际应用;由“相等关系”到“不等关系”
五、设计说明
新课标明确强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用,进而使学生获得对数学知识理解的同时,在思维能力、情感态度等多方面得到进一步发展。
《一元一次不等式》说课稿 篇2
《一元一次不等式》说课稿(通用11篇)
作为一名教职工,时常需要编写说课稿,认真拟定说课稿,优秀的说课稿都具备一些什么特点呢?下面是小编为大家整理的《一元一次不等式》说课稿,欢迎阅读,希望大家能够喜欢。
《一元一次不等式》说课稿 篇3
尊敬的各位评委,上午好!我说课的课题是《一元一次不等式组》。
我从教材分析、学情分析、教学目标、教学手段、教学过程这五个方面来进行说明。
一、教材分析
《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。
《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。
《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。
《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的教学重点确定为一元一次不等式组的解法。
数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。
本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。
二、学情分析
从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。
三、教学目标
在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:
1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。
2.了解一元一次不等式组及解集的概念。
3.会利用数轴解较简单的一元一次不等式组。
4.培养学生分析、解决实际问题的能力。
5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。
四、教学手段
本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。
五、教学过程
本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。
本节课我设计了五个活动。
活动一、实际问题,创设情境
问题1
小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地。后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克
(1)从跷跷板的状况你可以找出怎样的不等关系?
(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?
我提出问题(1),学生独立思考,回答问题。
考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。
教师提出问题(2),学生小组合作、探索交流,回答问题。
我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。
这里是通过对数量关系的分析、抽象,突出数学建模思想的'教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。
问题2
现有两根木条,一根长为10厘米,另一根长为30厘米,如果再找一根木条,用这三根木条钉一个三角形木框,那么第三根木条的长度有什么要求?
教师提出问题,学生独立思考,回答问题。
教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。
设计意图:这是一个与三角形相关的问题,要
求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。
活动二、总结归纳,得出概念
1.一元一次不等式组
通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。
即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组(linearinequalitiesofoneunknown)。
2.一元一次不等式组的解集
同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。
不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。
师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。
教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识,但是未必能够全面得出结论。因此,教师要耐心加以引导。
通过学生的自主探究,合作交流,培养学生的总结归纳能力。
活动三、解释应用、拓展延伸
例题
解下列不等式组,并把它们的解集在数轴上表示出来:
师生活动:师生共同完成,教师板书。
在对一元一次不等式意义理解的基础上,会解一元一次不等式组。
(2)是对解一元一次不等式组的拓展延伸。
练习1:
用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么大约多少时间能将污水抽完?
练习2:
某次知识竞赛有50道选择题,评分标准为:答对一题得2分,答错一题扣1分,不答题不得分也不扣分,某学生4道题没答,但得分超过70分,他可能答对了多少道题?
师生活动:教师展示多媒体课件,学生独立完成。
设计意图:培养学生分析、解决实际问题的能力。
练习3:
求不等式组的解集。
练习4:
求不等式组的正整数解。
师生活动:教师展示多媒体课件,学生独立完成。
设计意图:这两道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。
活动四、课堂小结
我提出了三个问题:
1.通过本课的学习,你学到了哪些新的知识?
2.一元一次不等式组与不等式在解法和解集上有什么联系?
3.在学习这些知识的过程中,你的经验与教训是什么?
在学生回答的基础上,教师作如下的归纳总结:
1.学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要,不等式组的知识源于生活实际,要学会分析现实世界中量与量的不等关系,解一元一次不等式组。
2.将一元一次不等式组的解集在数轴上表示可以加深对一元一次不等式组解集的理解,也便于直观地得到一元一次不等式组的解集,体现了数形结合的数学思想方法。
在课堂小结的过程中,教师提出问题,学生回答,互相补充
教学效果预估与对策:预计学生在利用本节知识解决所提出的问题的过程中,能够总结出经验和教训,有所收获。教师要加以引导,师生之间相互加以完善。
设计意图:学生通过第一个问题,可以回顾出本节课所学到的知识;通过第二个问题,使学生在与一元一次不等式的对比中加深对一元一次不等式组的理解,并形成知识网络。通过第三个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。
活动五、课后作业
1.教材P53练习1、2、4;
2.P55复习题A组5、6。
教师布置作业,学生记录作业
估计大部分学生可以较为顺利完成作业1;作业2具有一定的难度,需要学生首先进行判断,如果思维上存在障碍,可降低思维难度。
作业的设计,可以让学生巩固所学知识,让学生在这个环节中,进一步理解和体会数学建模思想在实际问题中的应用。
《一元一次不等式》说课稿 篇4
一 、说教材
1、 地位和作用
本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。
2、教学目标
知识与技能目标:
(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。
(2)感知不等式、函数、方程的不同作用与内在联系。
过程与方法目标:
让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来, 通过自主交流合作解决问题,充分发挥学生的主体作用。
情感与态度目标:
让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。
3、 教学重点、难点
教学重点:理解一次函数与一元一次不等式的关系;
教学难点:利用函数图象确定一元一次不等式的解集。
二、 说教法
1、 学情分析
我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。
2、教学方法
鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。
三、说学法
1、学生自主探索交流,思考问题,获取知识,真正成为学习的主体。
2、学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能 。
四、说教学程序
(一)创设问题情境,探究新知
兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。
游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。
教师提问:
你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?
在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?
设计游戏的目的有以下几点:
(1)游戏的内容便于学生列出函数关系式y=2x—4;
(2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。
(二)探讨归纳,讲解新知
(1) 解不等式 2x—4>0
(2) 观察函数y=2x—4图象,当自变量x为何值时,函数值大于0?
这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。
所以,首先让学生画出引例中函数y=2x—4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。
通过对以上两个问题的解决,使学生认识到解不等式2x—4>0也就是求函数y=2x—4图像上,当y>0时相应的x的取值范围,从而建立数形关系。
最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。
(1) 把一元一次不等式转化为ax+b>0或ax+b<0的形式;
(2) 画出一次函数图象;
(3) 一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。
(三)应用新知
例2的设计是让学生进一步熟悉图像法解不等式的'一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。
例2:用画函数图像的方法解不等式5x+4<2x+10。
方法1:原不等式化为3x—6﹤0, 画出直线y=3x—6。可以看出,当x<2时这条直线上的点在x轴的下方,即这时y=3x—6<0,所以不等式的解集为x<2
方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x<2时,对于同一个x,直线y=5x+4在直线y=2x+10上相应点的下方。这时5x+4<2x+10,所以不等式的解集为x<2。
总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。
从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系, 直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。
(四)随堂练习
1、自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?
(1)y=0;
(2)y=—7;
(3)y>0;
(4)y<2。
设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。
2、利用函数图象解出x:
(1)6x—4=3x—2;
(2)6x—4<3x—2。
设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。
(五)小结与作业
1、归纳反思
2、利用一次函数图像求一元一次不等式解集的步骤
作业布置
必做题:习题14.3第3、4题
选做题:已知y1=—x+3, y2=3x—4,求x取得何值时y1>y2?
自我反思
应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。
返回首页