返回首页
微文呈现 > 短文 > 教学教案 > 正文

六年级下册数学说课稿

2026/01/13教学教案

微文呈现整理的六年级下册数学说课稿(精选4篇),汇集精品内容供参考,请您欣赏。

六年级下册数学说课稿 篇1

一、说教材

1、教学内容

本节课是北师版小学六年级数学课本十二册第一单元第三课时。内容包括圆柱体的体积计算公式的推导和运用公式解决生活中的实际问题。

2、本节课在教材中所处的地位和作用

《圆柱的体积》是数学课程标准中“空间与图形”领域内容的一部分。《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。制定以下三维教学目标:

3、教学目标

知识目标:

(1)通过经历圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。

(2)通过操作让学生知道知识间的相互转化。

能力目标:倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念,培养学生的逻辑推理能力。

情感目标:让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。

4、教学重点

由于小学生的思维以具体形象思维为主,要抽象出直观的立体图形,建立表象,形成初步的空间观念并不容易。圆柱的体积公式推导过程可以培养学生多方面的能力,是圆锥体积计算的基础。这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,所以,我根据《新课程标准》的思想要求和学生的实际知识基础确定了本节课的教学重点是:

(1)通过观察操作,使学生初步感知立体图形之间的关系,掌握圆柱体积公式的推导过程。并能应用公式解决实际问题。

(2)通过小组合作、交流,培养学生的合作意识。

5、教学难点

教学源于生活又应用于生活,但难的就是如何让学生学会用数学的眼光去发现生活中的数学问题,用数学思考和方法去分析和解决生活当中的问题。圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑思维能力,因此,我确定本课的难点是:推导圆柱体积计算公式的过程,学生逻辑思维能力的培养。

6、教具、学具准备:

本节课采用的教具为课件和学具。

二、说教学过程

数学《课程目标》明确指出:数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程。因此,在新课的教学当中,我设计了三个活动,让学生在活动中掌握圆柱体积计算公式的推导。

对本节课的教学,我设计了以下几个环节:

(一)情境导入,激发兴趣

活动一、猜一猜

出示一个圆体的实物和一个长方体的实物,猜猜它们的体积谁大一些?

在没有学习圆柱体体积的情况下,学生会猜①圆柱体积大一些。②长方体体积大些。③一样大。④我们必须通过动手验证才能知道谁大。由此揭示课题,今天来探索圆柱体的体积。

(这一活动的设计,激发了学生的学习兴趣,使学生为了验证自己的猜想而产生了强烈的求知欲望,从而进入最佳的学习状态。)

(二)师生互动,验证猜想

活动二:学生自由探索,圆柱体积计算方法

以小组为单位设计出一种自己学过的知识计算圆柱体积的方法,通过合作,学生想到的办法可能有:

①把橡皮泥捏成圆柱体,再捏成长方体,量出长方体的长、宽、高。算出长方体的体积,也就是圆柱的体积。

②把圆柱形的杯子装满沙子,铺平,然后把沙子倒入较大的长方体的盒子中,量出长方体盒子的长、宽及沙子的高,算出沙子的体积,也就是圆柱的体积。如果杯子的厚度忽略不计的话。杯子的容积就是杯子的体积。

③把一个圆柱体放到装有(正)长方体容器中,水会上升,上升的水的体积就是圆柱的体积。

(这一活动的设计,是通过观察力求让学生体验到我们在计算圆柱的体积时都是把圆柱的体积转化为其他形体的体积来进行计算的。由此,也就可以验证学生的猜想是否准确,但是为了不影响学生的求知欲,我设计了这样一个问题:你能用这些方法来计算我们的学校门口这根圆柱形柱子的体积吗?

活动三:通过教师演示,理解转化,掌握圆柱的体积的'计算公式,在教学中我们尊重、欣赏学生用自己的方式去体验、探索学习的过程。也许会产生这样的矛盾,但正是这些矛盾激发了学生更加强烈的求知欲,由此我安排了学生利用手中的学具把圆柱体拼成一个近似的长方体,让学生观察长方体与正方体有那些密切的关系。再利用课件把圆柱体转化为长方体的过程演示一遍,使学生明白圆柱体转化成长方体时体积没有变化。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于底面积乘高。所以,圆柱的体积也等于底面积乘高。

(活动三的设计是根据教材的特点、学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成操作——演示——观察——比较——归纳——推理的认识过程。让知识在观察、操作、比较中内化,实现由感性到理性、由具体到抽象,这种教学方法符合学生的认知规律,有助于突出重点,突破难点。)

三、知识的运用

算一算:已知一根柱子的底面半径0.4米,高5米,算出它的体积?

四、知识的拓展

你能算出鸡蛋的体积吗?

总之,我认为课堂教学在本质上是学生在教师的引导下主动参与、自主发现与探究、独立思考和不断创新的过程,而不是简单、被动地接受教师和教材提供的现成的观点和结论。这也是诚如古罗马教育家普鲁塔克所说,儿童的心灵不是一个需要添满的罐子,而是一颗需要点燃的火种。因此。在课堂教学中,教师应积极创造条件,引导学生在主动的、探究的、体验的、建构的学习方式中,不断地实现自我超越和自我实现,获得多方面的满足和发展。

圆柱和圆锥单元学习学生易出现的问题:

1.圆柱的侧面积公式与圆柱的体积公式混淆。

圆柱的侧面积公式与圆柱的体积公式,前者是底面的周长×高,后者是底面的面积×高。学生学习了圆柱侧面积计算公式后,大部分学生都能利用圆柱侧面积计算公式进行计算。当学习圆柱的体积计算公式后,有一部分学生可能会与前公式混淆。

2.圆柱的体积公式与圆锥的体积公式混淆,

后者是前者的三分之一(在等底等高条件下),在教圆锥体积公式时,教师虽然用等底等高的圆柱和圆锥进行了演示,把倒满水的圆锥里的水倒在圆柱里,刚好可倒三次,为了加强学生三次,也就是说圆锥的体积是圆满柱体积的三分之一的关系,我演示了三次,还邀请三位学生上台实验。但是在作业中也有一部分学生忘了三分之一。也许是课堂上学习的注意力集中在演示上,也许是我高估了学生,我以为通过这样的几次的实验,学生应该能行,对公式的就一带而过。后来学生们去完成课本及练习中的一些习题,通过这样几个课时下来,孩子们都能较好地掌握。

3.应用公式解决实际能力较差。

本单元的难点是解决等积变形的应用题。例如:一个圆锥形麦堆,底面周长是25.12米,高2.1米,把这些小麦装入底面半径是2米的圆柱形粮囤正好装满,这个粮囤的高是多少?这是比较典型的等积变形题目,学生在处理这题时出现几种:第一种是思路不清,不知道要先求什么(圆锥的底面半径),再求什么(圆锥的体积),接着求什么,(圆柱的底面积),最后求什么(圆柱的高)。第二种是利用公式混乱,上题中牵连到圆的周长、圆锥的体积、圆的面积、圆柱的体积公式。第三种是计算、书写粗心,因为这一题计算繁多,步骤复杂,学生在书写时往往会眼花看错。

在圆柱和圆锥的体积教学目标中,都要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,教材这样要求是基于什么考虑?

我们以圆柱体积的内容安排为例。教材安排了探索圆柱体积计算方法的内容,引导学生经历“类比猜想—验证说明”的探索过程,体会类比、转化等数学思想方法。教材先呈现了“类比猜想”的过程,由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材又引导学生“验证说明”自己的猜想,教材中呈现了两种“验证说明”的方法:一种是用硬币堆成一堆,用堆的过程来说明“底面积×高”计算圆柱体积的道理,这实际上是“积分”思想的渗透;另一种方法是转化思想的渗透,即把圆柱通过“切、拼”转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。

要求让学生经历“类比猜想—验证说明”的探索其体积计算方法的过程,首先在于这种过程的重要性。数学发现通常都是在通过类比、归纳等探测性方法进行探测的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的.类比、归纳是获得猜想的两个重要的方法.类比是一种合情推理的方式,运用归纳、类比可以帮助人们猜想出结论。当然,通过合情推理得到的猜想还需要进一步证明。在小学阶段不要求给出严格的证明,学生只要能够从不同角度说明其合理性即可,也就是验证说明。

圆柱和圆锥的体积与已学习过的长方体和正方体的体积存在诸多相似点,为实施类比提供了可能。所谓类比,就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。运用类比法的关键是寻找一个合适的类比对象.在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,这些知识都是学习圆柱体积的基础,特别是长方体和正方体的体积计算公式“底面积×高”对探索圆柱的体积计算方法有正迁移作用。这就使得圆柱和圆锥的体积学习有了合适的类比对象或者说是类比的基础。

由于圆柱和长方体都是直柱体,长方体的体积可以用“底面积×高”计算,因而我们可以类比猜想圆柱的体积是否也可以用“底面积×高”计算。这是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式。同样,圆柱与圆锥体积之间,我们也可做出相近的猜想。

六年级下册数学说课稿 篇2

一、说教材:

1、教材分析

本节课的内容为:义务教育课程标准实验教科书六年级上册第六单元:统计。本单元是扇形统计图的教学,是在学生已有知识经验基础上进行编排的。是在学生学习条形统计图、折线统计图的基础上进行教学的,主要通过熟悉的事例让学生体会扇形统计图的特点和作用。

2、说教学目标:

知识与技能:

认识扇形统计图的特点,知道扇形统计图可以直观地反映部分数量与总量的百分中,能从扇形统计图中读出必要的信息。

过程与方法:

经历扇形统计图的认识过程,体验对比观察的学习方法。

情感态度与价值观:

在学习活动中体验数学知识与日常生活的密切联系,以及在生产生活中的广泛应用,激发学生的学习兴趣,培养学生分析、比较、观察的能力,加强学生思想教育。

3、说重、难点

教学重点:在合作讨论的过程中体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中发现信息。

教学难点:能从扇形统计图中获得有用信息,并做出合理推断。

二、说学法教法:

新标准指出:必须转变学生的学习态度,本节课在学生学习方法上力求体现:

1、联系生活实际解决身边问题,体验学数学用数学的乐趣。

2、在具体的生活情境中让学生亲身经历发现问题、提出问题、解决问题的过程。

3、通过独立思考,开展同桌及小组合作交流的方法,完善自己的想法,构建自己独特的学习方法。

这节课主要是通过实例使学生感受扇形统计图的必要性,并根据扇形统计图中的数据提出问题并解答简单的问题。所以,在教学方法上我力求体现以下几个方面:

1、创造性使用教材,让学生感受身边的数学。

《数学课程标准》指出:教材为学生的学习活动提供了线索。本节课的教学从学生的生活经验出发,创设情境,诱发学生学习知识的兴趣。

数学教学须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会。使他们有更多机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味和作用。在引入新课时,我通过让学生感受冬天到了,天气越来越冷了,有的同学已经感冒了。那么在冬天我们如何增强体质,抵御严寒,预防感冒呢?同学们自然就会想到参加体育锻炼,教师随之就问,你们知道我们班参加各项体育项目的人数分别是多少吗?学生感到要想解决这个问题就必须要统计一下。这样学生在生活中有了统计的意识,也激发了学生的.兴趣,引发学生探究的欲望。

2、改变学生的学习方式,让学生合作学习,培养学生的合作意识。

动手实践、自主探索、合作交流是学生学习数学得重要方式。《数学课程标准》指出:要为学生提供积极思考与合作交流的空间。弗赖登塔尔说过:学生学习是知识的“再创造”过程。教师设计一些探索性、合作性活动,让学生动口、动手、动脑,研究知识,“创造”知识。引导学生对条形统计图知识整理,从条形统计图中很容易看出哪些数学信息,感受条形统计图的作用。转变老师的角色,给学生较大的空间,开展探究性学习,让他们在具体的活动中进行独立思考,并与同伴交流,亲身经历提出问题、解决问题的过程。如当学生提出喜欢乒乓球项目的人数占全班总人数的百分比,在条形统计图中不能很容易的看出,而这种百分比在生产生活中又会经常用到,这时要想解决这个问题就需要一种新统计图,扇形统计图由此而产生。面对新知学生在相互交流讨论中,体验扇形统计图的价值,感受到扇形统计图的优越性。

三、教学流程分析:

(一)激趣引入,创设情境

多媒体学生感兴趣的生活资料,让学生收集、整理、分析信息,激发学生学习兴趣,体会数学来源于生活。

(二)新旧知识对比,探究学习

多媒体展示同学们最喜欢的明星统计图,引导学生读图思考、小组交流。在此基础上,出示教师收集的扇形统计图资料,引导学生读图交流,并归纳概括扇形统计图的特点和作用。

(三)练习提高

学生在归纳扇形统计图的特点后,出示教科书第107页做一做及108页习题2,使学生会利用扇形统计图处理解决问题,以同桌互问互答得方式提高了学习效率。

(四)作业布置让学生收集自己家中的收支情况,力争使学生不仅在学数学,也在用数学。体会数学带给我们的人文性。

六年级下册数学说课稿 篇3

一、说教材

1、教学内容:

本节课的教学内容是人教版数学六年级上册《圆》的第一节内容《认识圆》,主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等。

2、教材简析:

圆是一种常见的平面图形,也是最简单的曲线图形。学生已经对圆有了初步的感性认识,教学时,可以让学生回答日常生活中圆形的物体,并通过观察使学生认识圆的形状。再指导学生独立完成画圆的操作过程,掌握圆的画法。经过讨论使学生认识圆的各部分名称,掌握圆的特征。

3、教学目标:

(1)使学生认识圆,知道圆的各部分名称。

(2)使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

(3)使学生通过观察、实验、猜想等数学活动过程认识圆,进一步发展空间观念和初步的探索能力。

4、教学重点:会使用圆规画圆,知道半径和直径的关系。

5、教学难点:用圆规画圆。

二、学生分析

在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;本校处在城乡结合处,家庭辅导能力较低,学生接受能力较差;学生的学习水平差距较大,小组合作意识不强,鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。

三、说教法学法

1、学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发学习热情,让学生在经历、体验和运用中真正感悟知识。本节课我以学生亲自动手制作车轮为主线,在动手中引导学生认识圆的各部分名称,理解圆的特征,以及教学圆的画法时,有目的、有意识地安排了让学生折一折、画一画、比一比、、量一量等动手实践活动,启发学生用眼观察,动脑思考,动口参加交流、讨论,用耳去辨析同学们的答案。

2、教学中理应发挥学生的主体作用,淡化教师的'主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。

3、本节课我采用了操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过教具的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。

四、说教学过程

(一)、情景导入:

由课前准备的纸做的车轮(车轮有正方形的、圆形的),让两名学生滚车轮比赛来创设情境,通过学生讨论、交流,导入新课,让学生在充分观察的基础上,知道圆形的车轮既快速又平稳,使数学的内容充满人文色彩。在体现了社会性和时代感的同时,一下子就激发了学生的好奇心及强烈的探究欲望生动活泼,大大提高了教学效率。

(二)、动手实践,发现新知

通过折一折,量一量,画一画等一系列开放性活动,把学生变被动"学数学"为主动"做数学"。在"动手操作、自主探索、合作交流"等方式中老师一步步引导学生探索圆的各部分名称,同一圆里,半径和直径的关系等等,让学生掌握了数学的一些思想方法,理解了圆的基础知识,还训练了一些基本技能。尤为重要的是培养了学生的创新精神与合作精神,体验了数学学习的快乐,让学生的个性得到了张扬。

(三)、巩固练习通过填空、判断、操作等练习让学生更深入了解圆,充分理解在同一个圆里半径与直径的关系,做到首尾呼应,使学生初步感受数学知识来源于现实生活,又服务于现实生活,进一步体会数学与生活的联系,增强学习和应用数学的信心。

(四)、小结体验:这节课我们学习了什么?说一说你有哪些收获?

最后,让学生用右手食指画一个圆满的句号,结束课堂。

六年级下册数学说课稿 篇4

一、说教材

我说课的内容是九年义务教育人教版六年制小学数学第十一册第二单元52页例2和例3——比的应用,在本册教材中主要就是按比例分配。

之所以将例2和例3放在一节课,主要是为了形成知识的层次和渐进,以利于通过知识点的对比,让学生坚定对知识的感知结果。

按比例分配是把一个数量按照一定的比进行分配,它是在学生学习了“平均分”和“分数应用题”的基础上进行教学的延伸。教材是采用把比化为分数,用学生前面已学过的分数的知识来解答。这样安排学生容易接受,不仅加深了对分数应用题的理解,还有利于加强知识间的联系,为今后学习正反比例等知识打下基础。

二、说学生

六年级的学生在分析问题和综合运用知识方面具有一定的能力,而我班大部分学生思维活跃,能结合自己已有的知识去分析问题,学习新知识,具有一定的自学能力和实践操作能力。

三、说教学目标

1、使学生明确按比例分配是比的应用,又是“平均分”的发展,明确按比例分配的意义和作用。

2、让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题。

3、培养学生观察分析和动手操作以及自学能力,促进能力的发展。

在轰轰烈烈进行基础教育课程改革的今天,如何面向全体学生,使学生得到充分、自由、和谐、全面的.发展是制定课堂教学目标的主导思想。因此,为此,依据《数学课程标准》,我制定了这堂课的以上三个教学目标。

四、说重难点

重点:按比例分配应用题的特征和解答方法

难点:让学生知道“把什么数量按什么比例”进行分配

按比例分配应用题具有典型的特征,理解并掌握了这种特征,就能正确地运用这一知识去解决实际问题。

而把什么数量按什么比例进行分配,则往往是很大一部分学生感觉比较困难的,因此将其作为难点。主要将采用“自学——比较——应用”的方式来突出重点,突破难点。

五、说教法和学法

本节课主要采用操作实践,复习引入,指导自学,分析比较,实际应用等教学法。

推广素质教育的主渠道在于我们的课堂教学,如何把学生由被动听变为主动参与,关键在于要打破传统的灌输式教学模式。因此,我们要树立起尊重学生,相信学生,放手让学生主动学习的观念。针对这种教学思想,本节课的教学,要注意以下几个问题:

首先要营造一个愉快、和谐、民主的课堂气氛。

应该通过老师的语言、动作、表情,传递给学生一种亲切、鼓励、信任的情感意识,形成和谐的课堂氛围,从而有效地引导学生主动学习,体现学生学习的主体地位。

其次是要调动学生学习的主动性,激发学习兴趣。采取的手段主要是让学生动手操作,初步感知。安排动手操作,促使学生多种感官的参与,在“平均分”的基础上进一步感知“按比例分配”的概念。

第三就是指导自学,培养自学能力。

让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。

第四就是重视应用,正所谓“学以致用”,这样既可以检验学生的学习情况,又可以巩固学生在本节课所学的知识,可谓一举两得。

六、教学程序

本课的教学程序共分为两个部分:

第一部分主要解决什么是按比例分配,采用分石子的实际操作法,让学生通过动手操作,从而感知,以加深学生对按比例分配的理解;第二部分主要解决怎么按比例分配的问题。

要让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题,就必须要首先让学生理解什么是“按比例分配”,而采用分石子的实际操作法,即结合农村学生的实际,又让学生通过动手操作来感知,既贯彻了新课程理念,又体现了学生学习的主体地位,更是为了实现教学目标,突出重点,突破难点。

第一部分

什么是“按比例分配”

操作感知,导入新课。

在实际情境中理解按比例分配【《数学课程标准》第21页】

以同方为单位分一分

(这样有利于培养学生的合作学习的能力)

(1)、按1:1把8颗石子分成两部分。

(2)、按2:1把8颗石子分成两部分。

通过动手操作,让学生感知第一种情况是“平均分”,而第二种情况不是“平均分”。说明在我们日常生活和工农业生产中,除了“平均分”以外,还常常要把一个数量按照一定的比来进行分配,除了第一种情况是“平均分”外,还有第二种情况,由此导入新课,“按比例分配”。

这样安排导入有利于学生把握知识的发展变化与延伸,从而激发学生学习兴趣。

第二部分

怎样按比例分配

(一)、复习

(1)、甲数是8,乙数是10,则甲数是乙数的( ),甲数与乙数的比是( ):( )

(2)、第52页出示复习题:一个农场计划在100公顷的地里播种60公顷小麦和40公顷玉米;小麦和玉米的播种面积各占这块地的几分之几?小麦和玉米播种面积的比是多少?

这样安排,目的是把握新旧知识和连接点,为分散难点起着积极的迁移作用。

(二)、自学

1、提出问题,让学生有目的的自学

先出示自学要求:这道题分配的是什么?按照什么来分配?播种小麦和玉米的面积比是3:2,表示播种小麦和总播种面积的比是几比几?播种的小麦占总播种面积的几分之几?玉米的面积与总播种面积的比是几比几?播种的玉米占总播种面积的几分之几?

老师引导学生尝试,让学生自学课本例2。其目的是让学生自己在课本中找出解决问题的方法。

2、学生小组自学,教师进行指导

小组自学是合作学习的重要形式,它有利于培养学生的合作意识,这也是新课程要求的要培养学生的能力和品质之一。

3、学生汇报,师生共同解题

先检查自学情况,师生共同简略解决例2

然后让学生汇报:把谁按什么比例分配

4、自学例3

让学生在学习、理解了例2的基础上自然的过渡到例3,并运用例2的技能来解决例3,使学生实现知识和技能的迁移以及综合运用。

5、比较例2、例3

例2是把总面积100公顷按3:2进行分配,例3是把总棵树按3个班的人数所占比例进行分配。

这样做的目的是通过比较,让学生知道,按比例分配既可以是2个量比,还可以是3个或3个以上的量比。

(三)、练习

多层次训练,巩固新知识,形成技能。

练习是数学课堂教学一个重要环节,练习力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融洽恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。

1、基础练习

某班男女学生人数的比是9:4,男生占全班人数的( ),女生占全班人数的( )。

这个练习用采分散难点,促使知识结构的内化。

2、对应性练习。

62页的“做一做”第1题

采用讲练结合的形式巩固所学知识,让学生在学习新知之后即时得到巩固。

3、综合性练习。

(1)甲、乙两数的平均数是50,甲和乙的比是7:3,甲、乙两数各是多少?

(2)一块长方形地周长120米,长和宽的比是3:1,它的长和宽各是多少米?

这种练习旨在加强对比,提高学生分析和综合运用知识的能力。

(四)、运用

混凝土,石子、沙和水泥的比是3:2:5,现在有20吨水泥,需要多少石子和沙才能生产出这种合格的混凝土?

有了基础知识,并不等于拥有了技能。只有在掌握了基本知识方法的同时,教师大力提供应用时空,让学生自主地运用“双基”去解决实际问题,才能使学生形成技能和对知识与方法的迁移应用能力,应用已有的知识与方法去解决全新而又生疏的实际问题,这一点对于创新能力和创新精神的培养非常重要。

(五)、全课总结

你学会了什么知识?掌握了哪些方法?

这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。