返回首页
微文呈现 > 短文 > 教学教案 > 正文

《圆锥认识》说课稿

2026/01/18教学教案

微文呈现整理的《圆锥认识》说课稿(精选4篇),汇集精品内容供参考,请您欣赏。

《圆锥认识》说课稿 篇1

一、教材分析

教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式V=1/3sh。也就是等底等高的圆锥体积是圆柱体积的三分之一。教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的实际问题。

二、学生基本情况

六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的.认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。

三、教学方法

由于本节课是立体图形(圆锥的体积)的学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。

本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。

四、教学过程

本节课一开始,用口算,口答的形式引入课题:

一是培养了学生的计算能力;

二是为新授课作为辅垫,为学习圆锥的体积打下基础。

紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。

然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。

学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积;

二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。

最后,设计了三个巩固练习,都是在基本求出圆锥体积的基础上进行提高训练,这样即满足了基础知识的学习,又使优生能有所提高。搜集整理参考。

《圆锥认识》说课稿 篇2

大家好,我代表六年级所有的数学老师对我们的新课程义务教育标准实验教科书人教版六年级下册《圆柱和圆锥》这个单元作一个说课,下面我将从教材,教法学法,教学过程和板书设计四个方面来进行说课。首先我从教材分析入手:本单元是在学生已经了解并掌握长方形,正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并在学生已经直观认识圆柱的基础上,引导学生进一步探索圆柱和圆锥的特征。本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积和体积,圆锥的体积。圆柱、圆锥是我们在生产生活中经常遇到的几何形体。内容的安排上不仅有利于发展学生的空间观念,也为进一步应用几何知识解决实际问题打下基础。根据新课标要求,教材特点和学生认知规律,我制定了以下三个教学目标:

1、知识和技能:使学生认识圆柱和圆锥,掌握它们的基本特征。并认识圆柱的底面、侧面和高,认识圆锥的底面和高。引导学生探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际的问题。

2、过程与方法:引通过观察、设计和制作圆柱、圆锥的模型等活动,使学生了解平面图形与立体图形之间的联系,发展学生的空间观念。

3、情感态度和价值观:使学生理解除了研究几何图形的形状和特征,还要从数量的角度研究几何图形,如图形的面积、体积等,体会数形结合的.思想。通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。

基于以上分析,我把本单元的教学重点确定在充分感知的基础上,探索圆柱和圆锥的特征,并学会运用计算公式计算圆柱的表面积和体积,圆锥的体积的计算。教学难点是认识和理解圆柱的侧面积以及侧面积的计算方法和认识理解圆锥的高。

现代教育心理学认为,小学生的思维发展是从具体形象向抽象思维过渡的。因此,按照学生的认知规律,按照从“具体感知——形成表象——进行抽象”的过程,在教学中,我准备利用直观教具如多媒体课件,圆柱和圆锥的模型,采用引导探究法、观察演示法、讨论法等方式让学生能够多种感官参与学习,自主构建知识。

在学法指导上,我准备让学生采用:动手操作法,观察发现法,合作交流法、自主探究法的方法进行学习。

为了完成教学目标,突破教学重点难点,根据学生的实际情况,我准备每一个课时从创设情境导入新课,主动参与探索新知,练习巩固开发智能,自我总结深化新知四个方面进行教学:

一、创设情境,导入新课

圆柱和圆锥是人们在生产和生活中经常遇到的几何形体。这一部分的内容有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础,因此在本单元的教学之中,我注重加强与学生实际生活的联系,重视运用所学知识实际问题的意识和能力的训练。例如,在认识圆柱和圆锥的教学之前,我让学生收集、整理生活中有关圆柱、圆锥的实例和信息资料,以便在课堂中交流,在导入新课时从生活情境引入,结合学生收集的实物图片从整体上感知圆柱和圆锥,帮助学生抽象出圆柱和圆锥的表象。然后引导学生通过观察、比较、交流等活动,进一步探索圆柱和圆锥的特征。结合圆柱的直观图,介绍圆柱的底面、侧面和高。通过快速旋转长方形硬纸操作活动,引导学生结合空间想象,体会立体图形的形成过程,发展学生的空间观念。通过剪开圆柱形罐头盒的商标纸,让学生充分探究,把圆柱侧面展开后得到的长方形的长和宽与圆柱的相关量对应起来,为后面学习圆柱的表面积计算作准备。

二、主动参与,探索新知

在教学圆柱的表面积的计算方法,把探索圆柱侧面积的计算方法作为重点,强调了圆柱侧面展开图与圆柱的相关量之间的对应关系,通过计算生活情境中圆柱形厨师帽的布料,引导学生根据不同的问题情境灵活选择计算公式,提高解决问题的能力。

在学习圆柱的体积计算公式时,我重视让学生体会转化思想和极限思想,引导学业生经历把圆柱切开、再拼成一个近似长方体的逐步细分的过程,初步感知直术体体积的一般计算方法,从而得出圆柱体积的计算方法,再创设生活化的问题情境,提高学生的应用意识和问题解决策略,全面发展学生的问题解决能力。

在学习圆锥的认识这一节时,我也充分利用生活中的圆锥实物图片,通过让学生观察、比较、测量、交流等活动,探索圆锥的特征。结合圆锥的直观图,介绍圆锥的底面、顶点和高的含义。在教学圆锥体积这一节时,首先创设一个问题情境:如何计算圆锥的体积?引导学生探索,并给出提示:圆锥的体积和圆柱的体积有没有关系,然后引导学生通过猜想和实验,探究圆锥和圆柱体积之间的关系。得出“圆锥的体积等于与它等底等高的圆柱体积的三分之一”。

三、练习巩固,开发智能

四、自我总结,开发新知

在每一节课结束时,问一问这节课你获得了哪些信息?掌握了什么本领?引导学生从知识、能力、感受三个角度进行自我总结。最后老师在此基础上进行总结和提升,让每个学生都能自主的从这三个方面进行总结和梳理,养成归纳、自主提升的好习惯。最后布置自主练习,让学生及时的巩固所学的知识。

五、最后是板书设计:

我的每一节课的板书设计力求简洁、清楚、层次分明,重点和难点突出,让人看起来一目了然。以上是我对本单元教学设计的一些认识和看法,有不足的地方请大家多指正。

《圆锥认识》说课稿 篇3

一、教材分析:

本课内容是九年制义务教育课程标准实验教材(苏教版)六年级下册第18-20页《圆柱和圆锥的认识》。学生已经在一年级的时候初次认识了圆柱,已经会辨别;圆锥这一立体图形没有见识过,从未接触;在六年级上学期又认识了长方体和正方体这两种立体图形,积累了一些观察﹑探索立体图形特点的学习经验,这些都为本课的进一步学习奠定了基础。

二、学生情况分析:

由于已经是六年级的学生了,他们的主观性和能动性已经有较大的提高,能够有意识地去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生自主探究,合作交流,动手实践,让学生在具体情境中亲自体验感知圆柱和圆锥的特征。

三、设计意图:

(一)预习设计:

由于本课属于观察物体领域的内容,须借助于直观的实物或模型帮助体验,感悟圆柱和圆锥的各部分名称和它们的特点,因此我在设计时安排了两个环节:

1.课前准备(即收集生活中的实物和学具的制作)

2.自学教材内容,自主探究圆柱和圆锥的特征。

(二)新授设计:

在课一开始,让学生先回顾以前学过的一些立体图形,拿出学生课前收集的一些实物,让学生分别展示,介绍。从而自然引出课题:圆柱和圆锥的认识。接着,让学生小小组内交流预习作业,并提出交流和汇报的要求,让每个学生都积极参与倾听和主动发言的机会,试图改变只有少数几个优秀同学唱独角戏的局面。在大组汇报的时候,尽可能地让学生代表边演示边介绍发现的圆柱和圆锥的`名称和相关特征,其他小组提出相关补充或修改意见,教师根据学生的讲述相机课件演示,更加深了印象,凸显本课的教学重点,为后面的比较﹑总结圆柱和圆锥的相同点和不同点作铺垫。然后让学生欣赏生活中的圆柱和圆锥图片,再次感受数学的生活价值。

(三)练习设计:

本环节安排了说一说,判一判,连一连,做一做,猜一猜等活动,试图让学生灵活运用所学的知识解决实际问题。课堂练习单第4题在试教的时候发现学生在解题时有点难度,我觉得这时要适当点拨,指导一下。

四、试教反思:

本节课为了实现教学方式的多样化:学生自主探索、合作交流;教师引导为主,帮助为辅,我进行了尝试。从教学内容方面,本部分知识适合采取这种方式:有操作的情境,有活动的空间。从学生方面,学生的求知欲较强,活动能力相比有大的提高,他们能对同一个情境提出不同的解决问题的方法。从学生情感方面来看,他们喜欢合作交流的方式。但是由于本课准备得比较匆忙,有些环节的处理不够细腻,不太成熟,对课堂上生成的一些“意外”估计不足,教学机智不够灵活,所以还要有待于进一步提升,请各位领导,老师多提宝贵意见。

《圆锥认识》说课稿 篇4

大家好!

今天我说课的内容是冀教版小学数学六年级下册第35-36页。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

一、说教材

1、教材分析

《圆锥的体积》教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

教材突出了探索体积计算公式的过程,引导学生在装沙或装水的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。

2、学情分析

六年级的学生具备以下知识和技能:掌握了长方体、正方体的表面积和体积的含义及其计算方法,并掌握了圆柱的表面积和体积的计算方法,理解了圆柱和圆锥的特征。初步经历了“类比猜想——验证说明”的探索过程。能够小组合作、动手完成一些简单的实践活动。在教学中不光要让学生们知其然,还要让他们知其所以然,即深挖知识间的内在联系。

3、教学目标

知识与技能目标:引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。

过程与方法目标:通过实验推导圆锥体积公式的过程,培养学生的观察,猜测、操作能力,培养学生良好的合作探究意识,引导学生掌握正确的学习方法。

情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

4、教学重难点

教学重点:理解和掌握公式,能正确运用公式解决实际问题

教学难点:圆锥体积公式的推导过程

5、教具、学具准备

教具:一个圆柱、1个与圆柱等底、等高的圆锥、水;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺、沙子等

二、说教法

在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:

①、让学生测量比较自制圆柱、圆锥的高;

②、让学生用自制的等底等高、不等高等底圆柱与圆锥分别装沙实验入手。

通过学生自己动手测量、实验操作后总结实验规律。通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:V= Sh,然后通过让学生列举身边的实例,引入实际运用。这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

三、说学法

以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。

新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。

针对本节,在学法上主要采取:

1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的`主体作用,养成良好的学习习惯。

四、说教学程序

本节课的教学,我安排了5个教学程序:

1、激趣导入,设疑自探:

通过与学生关于买冰激凌的的对话,引导学生回忆圆柱体积的计算方法,提出圆锥的体积这一概念。

2、探索新知,解疑合探

小组合作,用自制等底等高、不等底等高的圆柱圆锥装沙子进行实验,从而得出等底等高的情况下,圆柱的体积是圆锥的三倍,圆锥的体积是圆柱的三分之一。推导出圆锥的体积公式V = S·h

3、运用公式,质疑再探

引导学生回到导入环节,运用总结出的公式计算圆锥形冰激凌的体积,解决买冰激凌的方案。然后出示圆锥形图片,给出直径和高,有学生自主解答,将知识进一步延伸。

4、课堂练习,拓展运用

由学生回顾整理本节课的主要内容,即圆锥的体积计算方法,同时引导学生加深对乘三分之一的记忆。

5、全课小结,布置作业

通过一些具有一定难度的练习题,使学生能够较好地运用圆柱与圆锥的关系,体会圆柱与圆锥之间只有在等底等高的情况下才有三倍的关系,合理布置本节课的作业,课下加深巩固。

五、说板书

板书内容力求醒目,字母公式使用彩色大字标示:

圆锥的体积

圆柱的体积=底面积×高

V = S·h圆锥的体积=圆柱的体积=底面积×高