返回首页
微文呈现 > 短文 > 心得体会 > 正文

数学学习心得

2026/01/24心得体会

微文呈现整理的数学学习心得(精选4篇),汇集精品内容供参考,请您欣赏。

数学学习心得 篇1

今年春天我有幸成为学校青年教师成长团数学团队的一名成员。团队活动为老师们提供了相互展示学习和交流的平台。在团队活动中,教师间相互交流,了解他人的教学思路和方法,取长补短,推陈出新,这样既有利于学生的学习,也有利于我们教师自身素养的提高。团队成员的平日细心研究,使我们每一次研讨都有很大的收获,每次研讨都给我提供了再学习、再提高的机会,不仅学到了丰富的知识,也进一步提高了业务素质。

下面是我对自己参加团队研讨学习的几点心得:

首先团队每个成员的钻研精神值得学习。

团队每个成员都把自己前段时间研究的成果进行了精彩的展示。这源于每一位成员平日的认真研究和积累,这种精神值得学习和发扬。

其次团队每个成员的教学理念都很先进。

培养学生的创新意识,发展学生的创新精神,是时代赋予我们的艰巨任务,在教学过程中,教师作为学生学习的组织者为学生提供自主学习、合作交流的空间与时间。在组织教学中采用自主学习、同桌交流、小组合作、组组交流、小组展示等课堂教学组织形式,让学生主动思考、乐于探索、勤于动手,大胆创新,确确实实把课堂放开,让学生真正动起来。从而调动学生的学习积极性、主动性,培养了学生对学习的兴趣,更在潜移默化中让学生知道了学习是自己的事情。产生你追我赶的、不甘落后的浓厚的学习氛围。

再次通过研讨解决了平日教学中的一些困惑小组合作是我们课堂的主要组织形式,但有时往往流于形式,在小组展示环节中,往往成为优生的舞台,我也常为这些问题所困扰,通过学习几位老师的关于小组合作学习研究,使我有很大的收获。例如,组织小组合作学习要选择合适的契机:在教学内容的重点和难点处;在教学中容易混淆的概念、规律时;在沟通知识的联系时;在巩固新知识和应用新知识的练习时。我会把学到的知识应用到平日的教学,使小组合作学习更有效。

团队研讨为我们营造了一个相互学习的学习环境,学习到了新的教学模式、环节模式和教学理念,我要把汲取到的先进理念、思想运用到工作中行动起来,让团队研讨的价值在我的工作中得到最大的体现。

数学学习心得 篇2

早些年的时候,是进修八字术数的,刚开始看周易,便率先接触到八八六十四卦,那个时候没有耐心看,觉得演变的头晕脑混的。再加上觉得四柱八字预测得先让来人报“生辰八字”很麻烦,有的甚至还不知道自己的生辰八字,觉的此项预测术不适合我,所以学了没多久,就跑到奇门遁甲的世界里。然后再奇门遁甲里旁触到“梅花易数”,说是深研究,其实也不过是照卦说卦,相当的死板了。

奇门遁甲的实战中,总结出“申家奇门”的思路,奇门遁甲可以让我“玩的全盘转”,那么梅花易数是不是也可以改变研究策略?扔掉电子书、笔记,来个活学活用?奇门遁甲是风火轮,可以全盘转,那梅花易数能不能把大自然变成“游乐场”?随处可“点”可“用”呢?

上网搜索了有关“梅花易数“的资料,以“梅花易数入门”、“梅花易数如何学习”、“梅花易数笔记”等相关字眼进行搜索,也因此注册了很多易学论坛,为的是下载相关的“梅花易数”资料,看了看,基本上跟我买回来的“梅花易数”书说的一样,更是神秘莫测了,有关的测例也是少的可怜,怪不得“梅花易数”给人感觉那么“深”,那么“玄”了。

其实那些资料“看了等于白看”,根本不会有什么长进,顶多教你个怎么排卦而已,解卦的过程你根本摸不到。“梅花易数”分体用卦,体用两个卦变来变去,最后一锤定音出了个变卦,而变卦并不是事情的最终结果,最经典的部分在于那变化之间。6个爻再加上六个爻,上卦加下卦,单独来看又是八卦中的一个小卦。就是两个小碗跟一个纸团的游戏,类似考眼力的游戏。

数学学习心得 篇3

一、行列式部分,强化概念性质,熟练行列式的求法

在这里我们需要明确下面几条:行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调。此外,伴随矩阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的细节。涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加以巩固。

三、向量部分,理解相关无关概念,灵活进行判定

向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢首先在于对定义概念的理解,然后就是分析判定的重点,即:看是否存在一组全为零的或者有非零解的实数对。基础线性相关问题也会涉及类似的题型:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

四、线性方程组部分,判断解的个数,明确通解的求解思路

线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的求解与证明以及带参数的线性方程组的解的情况。通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带入增广矩阵化简整理;不为零则有唯一解直接求出即可。若为非齐次方程组,则按照对增广矩阵的讨论进行求解。

五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵对角化的求解

矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相关题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对称矩阵的问题。

六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定理

二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。另外二次型及其矩阵表示,二次型的秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方法等等。

数学学习心得 篇4

作为一个过来人,我觉得这是比较正常的,题主不需要有多余焦虑。在我大一刚开始学数分和高代时,整个思维模式也受到了“新数学”的洗礼,有一个适应的过程。可能,对于大学之前没怎么接触过这些课程的大部分人,都会有与你类似的感受。

反正我们班在大一之后,有好多弃坑转专业的,认为大学“数学”跟想象的不一样,整天就是概念证明啥的,有些枯燥无味。

我想这主要是因为我们被中学的数学束缚太久,习惯了“计算式”的数学。

想一想,我们在大学之前所接触的数学,主要是初等代数,平面和立体几何,三角函数和圆锥曲线,多项式和不等式等内容,课上所学也注重技巧的运用,和形式的计算及简单的推导。事实上,这些绝大多数是三百年前甚至两千年前的知识,关于现代数学的涉及基本没有。

即使高中时接触到了导数,极值等有关极限的概念,但没有讲更深。很多概念,还是停留在特定模式的计算和“只可意会不可言传”的理解层次上。

而近代数学的发展,特别是分析的严谨化以来,“数学的本质已经不是计算,对数学的精通不意味着能够做复杂计算或者熟练推演符号。近代数学的重心已从计算求解转变为注重理解抽象的概念和关系。

证明不仅仅是按照规则变换对象,而是从概念出发进行逻辑推演。”(出自微信公众号:中国科学院数学与系统科学研究院—数学是什么?)所以,从高中到大学,所学的数学,内容上可以说是有了质的提升和深化。尤其数分里,很多知识点的定义,真真表现了分析的严谨和自成体系的理论。像极限的表述,就把一个脑海里变动的过程所导致的结果,合理地用定性的语言作了描述。

这很“数学”,不再是意会的说不清道不明。虽然会遇到困难,但是我相信当你耐心地钻进去,体会概念之间的联系,证明的精巧和严谨会极大地刺激你的求知欲,这是数学专业学生的必经之路。

我认为你目前的状态,首先要能清楚地理解每一个概念和定义。如果有不清晰的点,请教一下老师,这是事半功倍的,因为以老师多年的数学功底和教学经验,可以帮助你更准确地把握一些关键知识点和定理的运用,平时要及时地多做练习,掌握一些解题的技巧。

可以买一些教材配套的参考书啥的,遇到不会的,学习一下标准的解答,也不要死磕,毕竟没有那么多时间和精力。一切学习,都是从模仿开始的,根据书上定理或者例题的证明思路,要学着去尝试证明别的题。

总之,要多读,多想,多做,这样你的学习能力的积累和理解力才能提升。学好这些基础课是极其重要的,后续的很多课程:像实变函数、泛函分析,抽象代数等都是数分高代的抽象版,如果一开始的学习里积攒很多不扎实的点,会让以后变得更加难以捉摸。

我自己现在就是,当开始真正研究问题时,不得不耗费精力去弥补之前的不足之处。

守得云开见月明,我觉得如果你是真正爱数学,能作为一名数学专业的学生去感受数学所表现出的优美和深刻是很幸运的,你有机会去真正理解数学是什么?加油,我相信你会做的越来越好