《商不变的规律》教学反思
微文呈现整理的《商不变的规律》教学反思(精选5篇),汇集精品内容供参考,请您欣赏。
《商不变的规律》教学反思 篇1
本节课,学习了商的变化规律,让学生通过“观察——探索——交流——总结”完成学习任务,让学生在合作交流中互相启发、互相激励、共同发展。在学生获取知识的探索过程中,教师给学生提供了探索的时间和空间,让学生有展示研究成果的机会,体验成果的喜悦,感受自主探究的乐趣,激起学生的学习兴趣。
教学过程中也存在着明显的不足:
1.小组合作的实效性还有待提高。有些学生只是“观众”没有参与的欲望,还有的学生只说自己的想法,不愿意倾听别人的想法更别说提出建议和意见了。还得进一步明确每一小组成员的职责,让每一个孩子都有自己的.任务可做,充分发挥小组合作的实效性。
2.时间长处理的不好,由于新知用的时间较长,以至于后面的练习量不多。
3.回答问题没能够面向全体学生,总感觉回答问题就是一部分孩子的“接力游戏”,部分学生的积极性不够高。
总之,一节课下来,留给我很多值得继续保持的方面,也留给我一些要注意改进的地方。扬长避短,我还需要在今后的教学中多学习,多反思,多实践,使自己的教学质量得提高。
《商不变的规律》教学反思 篇2
《商不变的规律》教学反思(通用13篇)
作为一位刚到岗的教师,我们的工作之一就是课堂教学,写教学反思可以快速提升我们的教学能力,那么应当如何写教学反思呢?下面是小编为大家整理的《商不变的规律》教学反思,仅供参考,欢迎大家阅读。
《商不变的规律》教学反思 篇3
今天课一开始,我先复习了积的变化规律,而后再提出今天的学习目标,今天我们来研究商的规律。马上就有学生说是商不变的规律。我抓了了问:那么商不变规律究竟是什么呢?谁来说一说。学生嗫嗫不知如何表达。于是我说:本节课我们就来研究吧。
一、给出一个模式
出示了书本例题的题目,是8400÷40=210。我接着问:被除数和除数同时乘或除一个数,商会怎么样。看到学生明显没有明白题目的意思,为了避免学生探究的`时候漫然无目的,我给了一个示范,是
8400÷40=210。
(8400÷4)÷(400÷4)
=2100÷100
=210
得出商没有发出改变。
接着让学生依照老师的模式自己来把被除数和除数同时乘或一个数。学生有了模式,明白了自己应该去做什么,探究活动进行得很顺利。到最后,让学生自己用语言来总结商不变规律的时候,语言都是十分流畅的。
往往我们的学生不知道老师的要求,不知道题目如何去下手时, 那么,这时候就让我们给出一个模式,规范他们的思维过程,规范他们的探究道路。
二、适时的比较,明确一些难点。
这是一个教学环节:
师:商不变规律是什么?谁来表达一下。
生:被除数和除数同时乘上或除上一个相同的数,商不变。
生2:被除数和除数同时扩大或缩小相同的倍数,商不变。
师:小黑板出示书本的定义:被除数和除数同时乘以或除以一个数(0除外),商不变。
问:和你们概括的,有什么不同的地方。
生:多了0不变。
师:为什么要把0排除在外呢?
相机说明0:0乘任何数都得0,而0作除数是没有意义的。所以,商不变规律在碰上0时无效。
0除外这一点很多学生都不会太注意,但这的确是一个要提醒学生的地方。在这个教学环节中,学生在总结了商不变规律之后,应该说总结得还是很到位的,我顺势出示书本上的规律,让学生把自己的语言与书本上的语言进行比较,并说明0的特殊性。在这样的观察、比较、分析、运用过程中,学生们也都对0除外这一点留下了十分深刻的表象,并且明白了其中的道理,也体悟了一把数学语言的精确性和慎密性。
《商不变的规律》教学反思 篇4
《商不变规律》是学生在学习了除数是整十、整百数的口算以及除数是三位数的笔算除法的基础上学习的。本节课旨在引导学生发现商不变规律和应用商不变规律对被除数和除数末尾都有0的口算、笔算进行简算。我在这节课中突出体现以学生为主体、训练为主线的观念,充分调动学生的学习兴趣,参与学习的全过程,注重引导学生的观察、分析、讨论概括出规律,培养学生科学合理的思维方法和探索精神,教学效果不错。
课堂上我能充分发挥教师的主导作用和学生的主体作用,在各个教学环节上充分发挥了教师创造性的教学。在教学中,能给学生创造主动参与的机会,放手让学生讨论,相互交流,并通过尝试练习对比和分析,引导学生独立自主地获取知识。如:让学生从自己动手编题到自己动脑探索,从数量之间的`变化中得出“商不变”的规律,从大胆设想规律的用途到——验证,老师“扶”得少,学生创造得多,学生不仅学会知识,更重要的是提高了独立思考,主动探索、研究和创造的能力。
《商不变的规律》教学反思 篇5
在教学“商不变的规律”这节课时,课堂上发生了一件值得思考的事情。
课堂上,学生通过观察、猜测,初步发现了商不变的规律,接着学生自己举例验证商不变的规律。根据多年的教学经验,我断定是不会出现异常情况的,于是我像往常一样巡视着,发现多数学生是把被除数和除数同时扩大或缩小整十或整百的倍数来验证。我提示他们也可以同时扩大或缩小2倍、3倍等等。我的目的是想让学生扩大验证的范围,没想到特殊的情况发生了。
当我问学生“谁有新发现”时,立刻有两个女生惊喜地说道:老师,我发现了,商真的变了!我想,肯定是他们弄错了,于是故意好奇地反问道:是吗?并把他们举的例子写在黑板上。第一个女生所举的例子,很快被其他学生推翻了,而第二个女生所举的例子却让大家顿时陷入了困惑之中。
她所举的例子是这样的:
6÷5=1……1
12÷10=1……2
18÷15=1……3
看到这样的`算式,有的学生说:商真的变了啊!有的学生带着怀疑的口吻说:商不变的规律不成立?也有学生猜测道:商不变的规律只适合没有余数的除法。我故意装作不懂地问道:这是怎么回事呢?此时,有个学生大声说:老师,如果把商变成小数就一样了。这个学生的想法提醒了大家。经过计算,这几道题的商都是1。2,学生们也立刻打消了疑虑。于是我又指着上面三个算式问:那这些算式是怎么回事呢?学生都睁大眼睛,仔细观察算式。我提示道:商和余数的意思相同吗?学生又立刻争论起来。最后大家达成共识:商和余数是两个不同的概念,这些算式的商没有变,都是1,只是余数变了,还是符合商不变的规律的。
虽然这个女生的发现最终不成立,但是我还是表扬了她,正是她举的例子给课堂带来了新鲜空气,让大家明白了商不变的规律的广泛性。同时我也看见孩子的潜力有多大,孩子的思维有多活跃!
这节“商不变的规律”我虽然教了多次,但是唯独这次让我终生难忘。一节课,按照教师的预设顺利地完成任务固然好,但是像今天这样的课堂虽然出乎意料,却比顺顺利利地完成任务更有价值,更有意义,更值得回味。新课程改革的确给课堂带来了变化,给学生提供了发展的空间,也给我们的教学生活增添了从没有过的惊喜!我喜欢新课程,喜欢新课堂,喜欢这些活泼、聪明的学生们!
返回首页