正比例教学设计
微文呈现整理的正比例教学设计(精选4篇),汇集精品内容供参考,请您欣赏。
正比例教学设计 篇1
【教学目标】
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生用发展变化的观点来分析问题的能力。培养学生概括能力和分析判断能力。
【教学重点】
使学生理解正比例的意义
【教学难点】
引导学生通过观察、发现思考两种相关联的量的变化规律。
【教学过程】
一、复习:
1、已知路程和时间,求速度?
2、已知总价和数量,求单价?
3、已知工作总量和工作时间,求工作效率?
4、已知圆柱体的体积和底面积,高度怎么求?
二、课程教学
1、出示例题1图:观察图中的小女孩在做什么,她前面杯子里的水一样多吗?水的体积和高度有什么规律?
让学生观察表格,分析数据的变化规律,将相应数据填写在表格内。
思考:再填表中你发现了什么?
点拨:高度变化,体积也随着变化,我们就说高度和体积是两个相关联的量:根据计算,你发现了什么?(相对应的两个数的比的比值一样或固定不变)
用式子表示他们的关系是:
教师小结:
同学们通过填表、交流,知道高度和体积是两种相关联的量,体积随着高度的变化而变化,高度扩大,体积随着扩大;体积缩小,高度也随着缩小。如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:
2、教学例2
出示例题图2:例1的实验结果可以用下面的图像表示:
(1)从图中你发现了什么?
(2)不计算,根据图像判断,如果杯中水的高度是7cm,那么水的体积是多少?225cm3的水有多高?
点拨:每一个红点对应的'x和y值分别是多少?黑色图线上的点表示x和y的变化情况。因此,x=7时,y=175;当y=225时,x值对应的是9。
三、课堂练习
出示"做一做"内容:一辆汽车在高速路上形式,下面是汽车行驶的时间和路程。
(1)你能写出几组路程和相对应的时间的比?比较这些比值的大小,说一说这个比值表示什么?
(2)表中的路程和时间成正比例吗?为什么?
(3)在下图中描出表示路程和相应时间的点,然后把它们按顺序连起来。并估计一下行驶120km大约要用多长时间。
提示:可以通过例题1、2,自己分析并解决。
教师巡视,发现问题及时给予提示和帮助。前面的(1)、(2)问题可以共同解决。(3)要让学生自己动手分析。
四、课堂小结
正比例教学设计 篇2
一、章节:
《义务教育课程标准数学实验教科书》六年级下册第二单元。
二、学习内容:
1、介绍正比例的定义。
2、用描点连线的方法画出正比例图像。
3、会判断两个量是不是成正比关系。
三、学习者分析:
正比例是小学生第一次接触到函数的概念,理解上会有些困难,需要大量生活中实际的例子和老师的引导来帮助学生的理解。同时正比例函数也是以后学习函数的基础,所以打好这节课的基础至关重要。
四、教学目标:
1、知道什么是正比例,理解其定义以及含义,掌握正比例比值一定的特点。
2、建立数形结合的概念,会用描点法画正比例函数的图像,通过图像的.特点是一条过原点的直线进一步理解正比例函数的性质。
3、建立函数的概念,懂得用y=kx的函数形式来表示正比例函数。
五、教学重点:
理解正比例函数的定义,掌握正比例比值一定的特点,会判断两个量是不是成正比。
六、教学难点:
学会用函数的形式来表达正比例,即y=kx,建立函数概念。 解决措施:给同学们下发网格纸,在网格纸上进行描点,连线,画出比值不同的直线进行观察,比较。
七、教具准备:
课件,表格
八、教学过程:
1、导入新课(时间5分钟)
2、独立思考环节(时间4分钟)
3、介绍正比例的定义(7分钟):两种相关的量,一种量变化,另一种量也随着变化如果这两种量中相对应的两个数比值一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例。
4、总结归纳,深究定义。定义中需要把握住的几方面:
(1)两种相关的量
(2)一个量随着另一个量变化
(3)两种量中对应的两个数比值不变。
5、列举例子(8分钟):让学生判断例子是不是为正比例,如果是,让学生指出两个相关的量是什么,哪个量的变化引起了另一个量的变化,比值是多少,强化这三个方面。
通过学生的回答,让同学们说说自己是怎么来判断的,从而归纳总结出判断两个量是不是成正比例的依据:
一看是不是相关量;
二看是不是能变化;
三看是不是商一定。
6、用函数形式表示正比例(6分钟)
7、结束语:到这里时间也差不多了,回顾这节课我们学习了什么是正比例,怎么判断是不是正比例,也用简洁的函数表达式写出了正比例。那么下节课我们就要来学习正比例的图像是怎么样的,他能帮助我们判断正比例关系吗?还有利用上面的表达式去解决一些实际问题。请同学们做好预习工作。今天的课就到这里,下课。
正比例教学设计 篇3
正比例教学设计(精选10篇)
作为一名人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的正比例教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
正比例教学设计 篇4
教学目标
知识与技能:
1、能用描点法画出正比例函数的图象;
2、初步了解正比例函数图象的性质。
过程与方法:
通过画正比例函数的图象,探索正比例函数图象的性质,培养观察能力,体会用数形结合的方式思考问题。
情感态度与价值观:
通过动手操作,培养严谨的学习态度,并养成善于观察、善于归纳的学习习惯。
重点:正确理解正比例函数的图象及其性质。
难点:通过对正比例函数图象的观察,发现正比例函数图象的性质。
教学方法:
1、演示法———发展观察力,想象力;
2、启发法———培养学生主动学习能力;
3、形成性学习法———培养观察、归纳思维能力;
教学流程
教学环节:
教师活动——预设学生行为——学生活动
复习概念
复习定义及画函数图像的步骤,学生快速回忆已学的概念及画函数图像的步骤(抢答),积极回答问题。
例题演示
1、在同一坐标系中画出正比例函数,y=x,y=2x的图象
解:(1)列表
(2)描点
(3)连线
x … —3 —2 —1 0 1 2 3 …
y=x y=2x仔细观察,认真分析,各自说出自己所发现的规律,最后达成共识。
计算出正比例函数的值,认真观察图象。
发现规律
观察思考:比较上面三个函数图象的相同点与不同点,三个函数图像有怎样的变化规律。
共同点:
(1)都是比例系数k>0
(2)都是一条直线
(3)都过原点和点(1,k)
(4)都在一、三象限
(5)都是从左向右上升
不同点:上升的幅度不一样
归纳总结:
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点及(1,k)直线,我们称它为直线y=kx。当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随x的增大y也增大;
根据同学的发言与老师的归纳,修正自己的认识,逐渐理解正比例函数的性质以及画正比例函数图象的简单方法。发现正比例函数的性质。
规律应用
应用两点法在同一坐标系中画出y=—1.5x,y=—4x的图象,利用两点法画出函数图象,能迅速找到两个点。
发现规律
观察思考:比较上面二个函数图象的`相同点与不同点,二个函数图像有怎样的变化规律。
共同点:
(1)都是比例系数k<0
(2)都是一条直线
(3)都过原点和点(1,k)
(4)都在二、四象限
(5)都是从左向右下降
不同点:下降的幅度不一样
归纳总结:
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点及(1,k)直线,我们称它为直线y=kx。当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随x的增大y反而减小;
知识的迁移:用同样的办法发现规律。
课堂检测
1、用你认为最简单的方法画出下列函数图象。
(1)y=1.5x(2)y=-3x
2、正比例函数y=-4x的图象是过()和()两点的一条直线,图象过象限,y随x的。
3、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是。
A、m=1
B、m>1
C、m<1
D、m≥1
4、下列函数①y=5x ② y=-3x ③y= x ④y=-x中,y随x的增大而减小的是_____________。
(能根据正比例函数性质解决问题、认真做题)
小结
名称 解析式 图象特征 图象分布 函数变化情况 正比例函数
y=kx(k≠0)是经过(0,0)和(1,k)的一条直线
k>0,k<0;一、三象限Y随x的增大而增大
k>0,k<0二、四象限Y随x的增大而减小
板书设计
复习引入 描点法 画正比例函数图象 正比例函数图象性质
规律应用 总结规律 练习小结
返回首页