四年级下册数学教案
微文呈现整理的四年级下册数学教案(精选4篇),汇集精品内容供参考,请您欣赏。
四年级下册数学教案 篇1
教学内容:
教材第63、第64页的内容及第65页练习十五的第4、第5、第9、第10题。 课型 新课
教学目标:
1、通过实际操作、探究,掌握三角形的分类标准及方法,体会每类三角形的特征,并能够识别直角三角形、锐角三角形、钝角三角形和等腰三角形、等边三角形。
2、通过观察、分类记录等活动,折、剪等操作,提高学生的探索精神、归纳概括能力、逻辑思维能力和空间想象能力。
3、让学生在探究的过程中,感受到学习数学的乐趣,体验成功的喜悦,从而激发学生学好数学的热情,同时懂得合作可以提高效率的道理。
教学重点:
通过思考、自主探索、合作交流,分别从三角形的角和边两个方面的特征,对三角形准确的地进行分类。
教学难点:
能够掌握各种三角形的特征以及各类三角形之间的.内在联系。
教具学具:
多媒体课件、各种三角形图形。
教学过程:
一、情境导入
师:如果让你把班里某一个小组的同学分成两组,你将如何分组呢?
(学生回答)
师:既然如此,如果把三角形进行分类,你觉得应该按什么样的标准来分呢?为什么?
(引导学生说出原因)
师:刚才同学们说了两种方法,按边分或者按角分。这节课我们就一起来研究三角形的分类。
(板书:三角形的分类)
二、自主探究
1、认识锐角三角形、直角三角形和钝角三角形。
课件出示例5.
师:用量角器量出每组中每一个三角形的每一个角的大小,看看三角形中每个角是多少度?各是什么角》
生1: 通过测量发现,有些三角形的三个角都是锐角。
生2:有些三角形有一个直角、两个锐角。
生3:有些三角形有一个钝角、两个锐角。
师:三个角都是锐角的三角形叫锐角三角形,有一个角是直角的三角形叫直角三角形,有一个角是钝角的三角形叫钝角三角形。
2、把三角形按照角进行分类。
师:如果把所有的三角形看做一个整体,那么锐角三角形、直角三角形和钝角三角形都可以分别看作是这个整体的一部分,它们之间的关系你会画图表示吗?
(课件出示三种三角形的关系图)
3、认识直角三角形的直角边和斜边。
(课件出示直角三角形图)
师:在直角三角形中,夹直角的两条边叫直角边,直角所对的边叫斜边。你能用直尺量出每条边的长度吗?测量后你会发现什么?
生:通过测量发现,在直角三角形的三条边中,斜边最长。
4、认识等腰三角形和等边三角形。
(课件出示等腰三角形和等边三角形图)
师:观察三角形的三条边会发现什么?
生:有的三角形的三条边都不想等,有的三角形有两条边相等,有的三角形三条边都相等。
师:在数学上,有两条边相等的三角形叫等腰三角形,有三条边相等的三角形叫等边三角形,又叫正三角形。
5、认识等腰三角形、等边三角形各个部分的名称。
师:在等腰三角形中,相等的两条边叫做三角形的腰,另一条边叫等腰三角形的底,两腰的夹角是等腰三角形的顶角,腰和底边的夹角是三角形的底角。在等边三角形中,三条都相等的边都叫三角形的边。
6、等边三角形、等腰三角形之间的关系。
师:你能说说等边三角形与等腰三角形之间的关系吗?
生:两腰相等的三角形是等腰三角形,所以等边三角形师特殊的等腰三角形,但是等腰三角形不一定是等边三角形。
7、等腰三角形和等边三角形各自角的特征以及认识等腰直角三角形。
通过测量等腰三角形和等边三角形的角发现:等腰三角形的两个底角相等;等边三角形的各个角都相等。
有些直角三角形,有两条边相等,有两个角相等,这样的三角形在数学上叫等腰直角三角形,如常用的直角三角板中的一种。
三、探究结果汇报
师:哪一组的同学愿意为大家展示一下按角分类的成果呢?
(老师根据学生的讲述板书直角三角形、锐角三角形、钝角三角形)
师:按边分呢?
生:三角形按角分可以分成锐角三角形、直角三角形、钝角三角形;按边分可以分成任意三角形、等腰三角形、等边三角形。
四、师生总结收获
师:这节课,你知道了什么?懂得了什么?学会了什么?
生:三角形可以按边分类,也可以按角分类。
师:今天你学会了什么数学方法?
生:分类。
师:分类在我们的日常生活中和重要,因为运用了分类方法,我们的生活才变得井井有条,我们的生活才会更加舒心,更加精彩。
五、板书设计
四年级下册数学教案 篇2
学习内容:P61页例5
学习目标:通过合作探究,总结出小数点位置的移动引起小数大小的变化规律。
学习重难点: 小数点位置的移动引起小数大小的变化规律
一、【知识链接】
1、小数的性质是什么?
2、怎样比较小数的大小?
3、比较下列每组数的大小。
0.54○0.540 2.8○2.800 3.26○32.6 6.19○61.9
小结:一个小数在它的末尾添上0或者去掉0,小数的大小没有变,是因为没有移动小数点的位置;小数点的位置移动了,小数的大小也发生了变化。
二、【自主学习】
自学课本第61页例5,回答问题:
① 0.009米=( )毫米
② 0.09米=( )毫米
③ 0.9米=( )毫米
④ 9米=( )毫米
三、【合作探究】
1、从上往下观察,从0.009米变成0.09米,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。因此,小数点向 移动一位,小数就 到原数的 倍。同理,比较 ①和③ ,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的' 倍。比较 ①和④ ,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。
从下往上观察,小数点的位置依次向 移动一位、两位、三位,这个数就 到原数的 、 、 。
2、练习:4.5的小数点向左移动一位是( ),向右移动两位是( )
0.305的小数点向右移动( )是3.05,向左移动( )是0.0305,向( )移动( )是305,向( )移动( )是30.5。
3、小结:小数点移动要牢记:右移 ,左移 。移动一(二、三……)位是扩大(或缩小)10(100、1000……)倍,位数不够用 补位。
四、【拓展延伸】
原数扩大还是缩小由什么决定? 移动的位数决定什么?
五、【课堂小结】
小数点向右移动一位、两位、三位……,这个数就 到原数的 、 、 ……。小数点向左移动一位、两位、三位……,这个数就 到原数的 、 、 ……。
六、【课堂检测】
1、填空
(1)把6.2扩大( )倍是62。
(2)把59缩小到它的( )是0.59。
(3)0.28去掉小数点得( ),原数扩大了( )倍。
(4)73.21变为0.7321,原数就( )。
2、判断
(1)、0.8的小数点向右移三位,原来的数就缩小到了它的1/1000( )
(2)、3.69扩大1000倍是36.9。 ( )
(3)、把一个数缩小到它的1/10,就要把这个数的小数点向左移动一位。( )
四年级下册数学教案 篇3
1、探索乘法的结合律要以解决问题策略的多样化为依托。下面请老师们见教材19页探索部分,教材是通过比较2个学生的不同解题方法,发现规律的。这里要说明的一点是:我们所说的解决问题策略的多样化是指群体策略的多样化,通过比较不同学生的不同策略,来发现其中的规律,而不是要求每个学生都必须会用不同的策略解决同一个问题。
2、猜测、举例、验证必不可少。与学习加法的结合律和交换律一样,乘法的结合律和交换律也要经过猜测、举例、验证的过程。这一点,前面已经说过,在教材的呈现形式上已有所渗透。
3、运算律的字母描述形式,可以尝试放手。在教学第一单元时,由于学生是第一次接触用字母表示加法运算律,教师需要进行适当的`引导,但是本学习本单元时,由于学生已经有了用字母表式规律的经验,所以教师可尝试着放手,让学生自己去摸索,去表达。
4、关注学生已有的经验和认知基础,找准迁移点。学生有了第一单元学习加法结合律和加法交换律的经验,再来学习乘法结合律和乘法交换律,应该说难度不大。因此,教师要尽量放手,发挥其主观能动性,让学生自主地获取知识。在组织教学方面,由于本单元教材的呈现形式及教法渗透方面,与上单元很相似,因此,可参照第一单元的教学流程去组织学习活动(比如说,猜想——举例——验证)
5、运算律的探索、理解、运用是本单元的教学重点,规律的记忆要在理解的基础上进行。数学课程标准对运算律的教学提出的目标是“探索和理解运算律,能应用运算律进行一些简便运算”从字面意义上看,标准对我们的要求,是学会探索方法,理解定律的意义。当然作为基础知识与技能的教学要求,也即规律的记忆,这是必要的,但要在理解的基础上进行。
6、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
四年级下册数学教案 篇4
教学内容:课本第14页例3,练习四第1-3题,三步计算应用题(一)。
教学目标:
使学生熟练掌握数量关系及解题思路,会解答简单的两、三步计算的应用题。提高学生分析、推理能力。
教学重点、难点:
让学生掌握数量关系、学会分析问题的方法,既是教学的重点,也是学习的难点。
教学过程:
一、复习准备。
1.板演:
新镇小学三年级有4个班,每个班40人;四年级有114人。三年级和四年级一共有多少人?
2.思路训练。
全班同学口答:
(1)根据条件补充问题,并说出数量关系。
有5个教室,每个教室有8盏灯?
王平同学每天早晨跑500米,跑了5天?
8个打字员共打字1600个?
三年级有160人,四年级有114人?
(2)根据问题找条件,并说出数量关系。
平均每人采集树种多少千克?
火车速度是汽车速度的几倍?
香蕉比桔子少多少筐?
买足球共用多少元?
订正第1题,说说解题思路,是怎样分析的。
二、学习新课。
1.新课引入。
复习题是两步计算的应用题,如果问题不变,改变其中的一个条件,使其为三步计算的应用题,应该怎样表示?(学生可能想到,四年级人数不直接给出,改为四年级比三年级少46人。这样改是合理的,但它不是三步计算题了,因此只能改成:四年级有3个班,每班38人。)
教师点明:这就是我们今天要学习的应用题。(板书课题:三步应用题)
2.出示例3。
新镇小学三年级有4个班,每班40人,四年级有3个班,每班38人。三年级和四年级一共有多少人?
(1)审题、理解题意。
学生读题后,说出已知条件和问题。
师生共同完成线段图:
每班40人
三年级:
每班38人共?人
四年级:
(2)分析数量关系。
让学生结合线段图自己分析,并独立列式解答,然后集体交流,说出解题思路和过程。
分析:从最后的问题入手分析,要求三、四年级共有多少人。必须知道三、四年级各有多少人。但题中这两个条件都没有直接告诉,因此第一步先算三年级有多少人?40×4=160(人);第二步算四年级有多少人?38×3=114(人);第三步再把这两个年级人数合并起来,160+114=274(人)。就是要求的问题,即三、四年级的总人数。
教师板书:
①三年级有多少人? 40×4=160(人)
②四年级有多少人? 38×3=114(人)
③三年级和四年级一共有多少人? 160+114=274(人)
答:三年级和四年级一共有274人。
刚才的思考方法是从问题入手,找出所需要的条件,然后确定先算什么,再算什么,最后算什么。
大家想一想,如果从题目的条件入手分析,那么题目中哪两个条件有密切关系?可以得到什么新的数量?
(三年级有4个班,每班40人,可以求出三年级有40×4=160(人);四年级有3个班,每班38人,可以求出四年级有38×3=114(人);最后把两个年级人数合起来,160+114=274(人)就是题中要求的问题。)
3.反馈练习。
如果例3的已知条件不变,把问题改成三年级比四年级多多少人,应该怎样解答?
全班同学做在练习本上。
订正时说明是怎样想的。
小结:
我们解答应用题时,在认真审题理解题意的基础上,最重要的是分析数量关系,掌握分析方法,既要根据条件想问题,得到新的已知数量,也可以根据问题找条件,哪个条件是已知的,哪个条件是未知的,因此要先把未知的条件求出来。这两种分析方法是要经常用到的所以要切实掌握。
三、巩固反馈。
1.独立解答。
体育老师买了3个排球,每个40元,还买了2个篮球,每个62元,小学数学教案《三步计算应用题(一)》。一共用了多少元?(先用线段图表示出已知条件和问题,再列式解答)
解答后,学生说说解题思路,并订正。
2.比较题。
(1)菜场运来黄瓜8筐,每筐25千克,茄子12筐,每筐20千克,运来的黄瓜和茄子共有多少千克?
(2)如果改变其中一个条件,茄子12筐,改为8筐,其余条件和问题不变,应该怎样解答?
学生会出现的.两种解法:
25×8+20×8 (25+20)×8
=200+160 =45×8
=360(千克) =360(千克)
请同学们比较一下这两种解法的解题思路是什么?哪种解法比较简便?
通过讨论明确,有些应用题,由于解题思路不同,解题方法就不同,而且计算的步数也不一样。有的三步计算题可以用两步计算,这样使得计算比较简便。
同学们想一想,(1)题能否用两步计算?为什么?(从而明确由于两种蔬菜的筐数不一样,也就是当求两个积的和(或差)时,没有相同的因数,就不能用简便方法计算。)
3.粮店运来25包大米,共重2500千克,运来40袋面粉,共重20xx千克,一包大米比一袋面粉重多少千克?
四、全课总结:
我们今天学习的复合应用题,都是由几个简单的一步应用题组合而成的。解答是首先要理解题电,在此基础上分析数量关系是关键,无论采用哪种分析方法,都要找出条件与问题之间的关系,计算时要养成认真,细心的习惯。
五、作业。
练习四第1~3题。
附板书设计:
三步应用题(一)
例3 新镇小学三年级有4个班,每班40 菜场运来黄瓜8筐,每筐25千克
人,四年级有3个班,每班38人。三年 茄子8筐,每筐20千克,运来的
级和四年级一共有多少人? 黄瓜和茄子共多少千克?
每班40人 解法一:(1)运来黄瓜多少千克?
三年级: 25×8=200(千克)
每班38人共?人 (2)运来茄子多少千克?
四年级: 20×8=160(千克)
(1)三年级有多少人? (3)共运来黄瓜、茄子多少千克?
40×4=160(人) 200+160=360(千克)
(2)四年级有多少人? 解法二:(1)每筐黄瓜和茄子共重多少千克?
38×3=114(人) 25+20=45(千克)
(3)三、四年级共有多少人? (2)运来黄瓜和茄子共重多少千克?
160+114=274(人) 45×8=360(千克)
答:三、四年级共有274人。 答:运来黄瓜和茄子共重360千克。