《比的意义》教学设计
微文呈现整理的《比的意义》教学设计(精选4篇),汇集精品内容供参考,请您欣赏。
《比的意义》教学设计 篇1
教学内容:
比的意义。
教学目的:
1.使学生理解比的意义,知道比各部分的名称;学会求比值的方法,能正确地求出一个比的比值;理解比同除法、分数的关系。
2.培养学生比较、分析、抽象、概括和自主学习的能力。
教学重点:
使学生理解比的意义。
教学过程:
一、创设情境
同学们,在我们的生活中,经常可以发现两个数量之间有关系。
1、比如说,周老师今年25岁,这位同学你今年几岁啊?(指着第一位同学)(12岁)
师:大家能列个算式表示出我们年龄之间的关系吗?
(25-12=13)这个是相差关系。
师:还可以用别的方法进行比较吗?
生;12除以25求的是倍数关系。
师:好的,请坐!
2、请这组同学起立,我们一起来数一数,有几个男生,几个女生啊?(老师指着一起数,男生5人,女生3人)
师:除了表示出他们人数之间的相差关系,你还能列什么算式表示出他们之间的关系呢?
生:倍数关系。
3、我们以前还学过这样的题,看大家还记得吗?看屏幕:
一辆汽车2小时行驶90千米,平均每小时行驶多少千米?
学校用150元买来3个小足球,每个小足球多少元?
自己读题,看看每道题求的是什么?怎样列式。
交流:谁来说第1个小题,指名回答,根据回答板书:
(电脑出示:速度90÷2)
这里的90表示的是(路程),2表示的是(时间)
那你能说一说数量关系吗?(速度=路程÷时间)
这里的'速度表示的就是路程与时间的关系。
下一道呢?指名回答,
(电脑出示:单价150÷3)
数量关系式是什么呢?(单价=总价÷数量)
单价表示的就是总价和数量的关系。
好极了,请坐
师小结:我们看这些题都是用除法算式来表示两种数量之间的关系。
二、探究新知
(一)教学比的意义。
在我们日常的工作和生活中,常常要把两种数量进行比较,今天我们就来学习一种新的比较两种数量关系的方法。叫做“比”,一起来研究“比的意义”。(板书:比的意义)
1、这里的老师年龄是同学年龄的几倍用25÷12,可以说成“老师和同学年龄的比是25比12”
(电脑演示:老师和同学年龄的比是25比12)
一起读一下。
可以记作25:12(电脑演示25:12)
这里中间的两个圆点叫做比号,读作比。
那同学年龄是老师年龄的几分之几就可以说成同学和老师的年龄比是多少啊?(电脑演示:同学和老师年龄的比是12:25)
2、那你能把这句话变一个说法吗?
男生人数是女生人数的几倍可以说成“男生人数与女生人数的比是5:2”(电脑演示)
那如果是2:5呢?应该是谁和谁的比呢?
(电脑出示2:5)(电脑演示:女生和男生人数的比)
所以我们在说比的时候要有顺序地说。
3、那么路程÷时间=速度可以怎么说呢?(指着算式90÷2问)
你来试试:(路程和时间的比是90比2)
也就是速度可以说成是――(电脑演示:路程和时间的比)
4、单价可以说成什么呢?
生:单价可以说成是总价与数量的比(电脑演示:总价与数量的比)
5、那么从刚刚这些例子中我们可以看到,两个数相除,又可以说成这种比的形式。你能不能说说什么是比呢?
先在组里互相说说,开始。(学生说,教师巡视)
谁愿意来说说?(多说几个)
把他们的意见综合一下就是两个数相除又叫做两个数的比。
(板书:两个数相除又叫做两个数的比。)
一起读一下。这就是比的意义。比表示的就是两个数相除的关系。
7、那你们能不能自己举个用比表示两个数量关系的例子呢?同桌先相互说说。(学生说)
8、交流:学生回答,教师小结。这些都可以说成比。
9、刚才我们通过观察,研究,发现“两个数相除又叫做两个数的比”,并知道了比的写法,那你会写比了吗?一起来试试看,完成练习第1题。
(二)教学比的读写法,各部分的名称、求比值的方法
1、我们已经理解了比的意义而且学会了怎样来写比。那比是由哪几部分组成的?各部分名称又是什么呢?我想通过大家的自学,一定能很快解决。请大家对照要
(学生自学3分钟)
(电脑出示电脑自学提纲)
(1)什么叫比的前项?什么叫比的后项?什么叫比值?
(2)怎样求比值?
(3)“试一试”(完成练习第2题)
2、学生交流。
好,我们来交流一下你们的自学情况。
(1)指名学生回答问题1,教师板书
我们以5:3(板书5:3)为例,你能具体向大家介绍一下吗?
(比号前面的5叫做比的前项)
(比号后面的3叫做比的后项)
比的前项除以后项所得的商,叫做比值。
(2)那怎样来求比值呢?
(只要把前项除以后项)
以5:3为例呢?怎样求比值?(板书:=5÷3=5/3比值)
师:通过刚才的练习我们可以发现,比值可以用分数表示,也可以用小数表示,有时也可以是整数。当比值用分数表示时一定要是最简分数。
3、刚刚我们已经知道了比的写法,其实比还有另一种写法,同学们一起看。
例如5:2(教师指着5:2讲解)还可以写成分数形式。
我们一起来书空一下,注意:写的时候要从上往下写,它还是一个比,而不是分数,所以仍读作5比2。(板书:仍读作5比2),
《比的意义》教学设计 篇2
教学目标:
1、使学生理解分数的意义及分子分母的含义。
2、在操作、观察、思考、辨析等活动中,体会部分与整体的关系,感受分数的相对性。
3、让学生亲身体验知识的形成过程,激发学生探索知识的强烈愿望和数学学习的兴趣。
教学重点:
通过具体的操作活动,使学生理解分数的意义,发展学生的数感。
教学难点:
在比较辨析中体会部分与整体的关系,感受分数的相对性。
教学过程:
一、导入
出示:数
1、你们都学过哪些数?(整数、小数、分数)
把你知道的分数知识说出来,让我们大家分享一下好吗?
预设:
(1)分数有分母、分子、分数线
(2)把一个苹果平均分成两份,取一份就是1/2
(3)分数的比较大小
2、关于分数,你还想知道什么呢?
预设:
(1)分数加减法
(2)约分、通分
看来大家的求知欲很强,今天咱们就继续研究分数
二、实践操作,研究新知
(一)认识单位1
出示:1/4
1、你能举例说明1/4的含义吗?把它画下来
2、学生活动,教师巡视
先完成的同学再举举其他的例子
3、汇报交流
学生边汇报,教师边板书
预设:
(1)我把一块蛋糕平均分成四份,这样的一份就是这块蛋糕的1/4
板书:平均分
强调:是谁的1/4
(2)我把一个长方形平均分成四份,这样的一份就是这个长方形的1/4
(3)我把一米平均分成四份,这样的一份就是一米的1/4
(4)我把四根小棒平均分成四份,这样的一份就是(这四根小棒的)1/4
这一份是谁的1/4啊?(这四根小棒的)
也就是说把这四根小棒看成了一个整体平均分成四份,这一份就是这个整体的1/4
你们知道这个整体可以用什么来表示吗?(用自然数1来表示,通常把它叫做单位1。)这一份就是(单位1)的1/4
上面这些图中,把谁看做单位1?分别说一说
4、你还能把多少图形平均分,也能用1/4表示其中的一份?
(5)我把八根小棒平均分成了四份,这样的一份就是这八根小棒的1/4
这是把谁看成一个整体?(八根小棒),那么八根小棒就是(单位1)这样的一份就是(单位1)的1/4
(6)我把12根小棒看做单位1,平均分成四份,这样的一份就是单位1的1/4
5、请同学们观察我们操作的结果,有什么相同点和不同点?
相同:都是平均分成四份,表示其中的一份,也就是意义相同
不同:单位1不同,有的是把一个物体进行平均分,有的是把多个物体看成一个整体进行平均分
分多个物体时,1/4一会表示1根,一会表示2根,一会表示3根
6、通过观察你现在认为1/4与它们所分的物体的(个数)无关,也就是与(单位1无关)。无论物体的个数是多少,1/4的分母4,始终表示把它们平均分成四份,分子1始终表示其中的一份。只要把单位1平均分成四份,其中的一份就可以用1/4表示
7、每一份出现数量不同是因为(单位1不同)
8、如果把他们平均分成四份,表示其中的两份呢?(2/4)
你能说说它表示的含义吗?三份呢?四份呢?
1、刚刚通过大家的努力,我们用不同数量的物体找到了1/4,下面以小组合作的方式
(1)、把12个图形平均分一分,你可以得到哪些分数?
(2)、要求:以小组为单位操作,思考有几种分法。
根据操作过程填写记录单。
说清每个分数的含义。
把()看做单位1,平均分成()份,表示这样的()份是()的(),是()个图形。
2、小组汇报,根据汇报情况,学生质疑、解答。
结合表格或图说一说,每个分数中,分母表示的是什么?分子表示什么?这个分数表示什么含义?
2、教师:这样的2份、3份是单位1的几分之几?是几个图形
那也就说既可以平均分成若干份,又可以表示其中的一份或几份
3、归纳概念:
刚才大家开动脑筋,得出了这么多的分数,你能结合刚才的学习活动,结合表格试着总结出什么叫分数吗?
师在学生回答的基础上概括小结:把单位1平均分成若干份,它的`一份或几份就可以用分数来表示。这就是我们今天探究的内容分数的意义。(板书课题)
三、简单应用,生活中解释意义
1、分数不仅在我们的课堂中,而且还出现在我们的生活中。
中国是一个干旱缺水严重的国家。淡水资源占全球水资源的6/100,我国人均占有水量是世界人均占有量的1/4,北京市的人均占有水量是全国人均占有量的1/8。
学生自主阅读,结合具体情境说说每个分数的意义。
谈谈你读后有什么感受。(感受分数与生活的联系,增强节约用水的意识)
2、用分数表示下面个图中的涂色部分。
3、判断并说明理由。
四、总结
通过这节课的学习,你对分数又有了哪些新的认识?有哪些收获?
《比的意义》教学设计 篇3
《比的意义》教学设计(精选10篇)
作为一名默默奉献的教育工作者,通常需要准备好一份教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么你有了解过教学设计吗?下面是小编精心整理的《比的意义》教学设计,希望对大家有所帮助。
《比的意义》教学设计 篇4
教学内容:
人教版小学数学第十一册46页—47页。
教学目标:
1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。
2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。
教学重点:
比的意义。
教学难点:
比和除法、分数之间的联系和区别。
教学过程:
一、回忆生活素材,导入新课。
师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?
生2:黑板的周长是多少?
生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4
师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)
[评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。
二、充分感知,建构意义1、整理生活素材
师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)
宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?
生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)
2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的`比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。
3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。
学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。
师:从这道题你能发现比值的取值范围吗?
生:比值可以是整数,可以是小数,但更多形式是分数。
4、练习①说出下面每个比的前项和后项,并说出比值。
(生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。
[评析]:在这个环节的教学中,教师能采用学生熟悉的事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。
5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:
比前项比号后项比值
除法
分数
②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。
在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。
(学生情绪高涨,一分钟后陆续汇报。)
生1:(很高兴)四局比赛我赢了,4比0。
生2:我和同伴打平局2比2。
生3:我和同桌的比赛结果是2比3。
……
师板书:4:02:32:20:43:1
生:老师,比的后项不能为0,这里为什么是0呢?
生:比赛中的比和我们今天学的比一样吗?
生:这个2:2可以化简比吗?
(没等我组织学生讨论,就有学生站了起来。)
生:2:2只表示双方各得二分,不表示相除关系,不可以化简。
生:4:0表示对方得0分。
……
师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。
生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。
[评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。
因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。
三、巩固练习:
①、苹果是梨的,苹果与梨的比是():()
②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()
③、400千克与0.2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。
④开放题:选择合适的数量组成比
我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3.5张。
学生回答后讲评。
[评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。
四、小结归纳,应用拓展
全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?
[评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。
课后反思:
《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。