数学《平均数》教案
微文呈现整理的数学《平均数》教案(精选4篇),汇集精品内容供参考,请您欣赏。
数学《平均数》教案 篇1
教学目标
知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。
过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。
情感态度与价值观:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:
让学生感受算术平均数与加权平均数的练习和区别
教学难点:
利用算术平均数与加权平均数解决问题
教学过程:
第一环节:情境引入 (3分钟,复习导入,学生回顾)
内容:请同学们回忆:什么是算术平均数?什么是加权平均数?
请同学们各举一个有关算术平均数和加权平均数的实例,并解决之。
在学生的复习交流中引入课 题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。
第二环节 :合 作探究(25分钟,小组合作 探究,教师指导)
内容:1.做一做[
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:
黑板 门窗 桌椅 地面
一班 95 90 90 85
二班 90 95 85 90
三班 85 90 95 90
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的`方案,哪一个班的卫生成绩最高?
对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价。正确的答案是:
一班的卫生成绩为:9515%+9010%+9035%+8540% = 88.75
二班的卫生成绩为:9015%+9510%+8535%+9040% = 88.75
三班的卫生成绩为:8515%+9010%+9535%+9040% = 91
因此,三班的成绩最高。
对于第( 2)问,让学生先在小组内各抒己见,然后在全班交流体会:
以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。
内容:2.议一议
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年 增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?
以下是小明和小亮的两种解法,谁做得对?说说你的理由。
小明: (9%+30%+6%)= 15%
小亮:
学生分组讨论,全班交流,说明理由:
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率地位不同,它们对总支出增长率的影响不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的权,从而总支出的增长率为小亮的解法是对的。
第三环节:运用提高(10分钟,学生独立完成,全班交流)
内容:1.小明骑自行车的速度是15千米/时 ,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如 果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?
2. 某校招聘学生会干部一名,对A,B,C三名候选人进行了四项素质测试,他们的各项测试成绩如下表所示:
测试项目 测 试 成 绩
A B C
语 言 85 95 90
综合知识 90 85 95
创 新 95 95 85
处理问题能力 95 90 95
根据实际需要,学校将语言、综合知识、创新、处理问题能力按20%、30%、30%、20%的比例计算成绩,此时谁将被录用?
第四环节:课堂小结(2分钟,学生总结0
内容:说说算术平均数与加权平均数有哪些联系与区别?
教师引导学生比较、议论、交流、总结出结论:
算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数。
由于权的不同,导致结果不同,故权的差异对结果有影响。
第五环节:布置作业
课本习题8.2。A组(优等生)1、2、3 B组(中等生)1、2
C组(后三分之一)1、2
数学《平均数》教案 篇2
教材分析:
平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。
本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。
学情分析:
本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的'教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。
教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。
重难点:
重点:理解平均数的含义,会求平均数。
难点:平均数的统计意义。教学准备:PPT、教具。
教学过程:
一、激情引入
师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)
师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)
师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)
师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。
二:学习新知
师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)
师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)
师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)
师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。
师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。
师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)
师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)
师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。
师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。
师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。
师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?
三、知识运用
师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?
(播放踢毽比赛的视频)
师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?
生:不公平,人数不同,不应该比较总数,应该比较平均数。
师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。
师:那同学生动手计算出男女两队的平均成绩,判出胜负。
师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)
师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。
四、课堂小结
师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)
五、作业
92页做一做第二题
六、板书
平均数代表总体水平
总数÷ 份数=平均数
(14+12+11+15)÷ 4 =13(个)
最大的数>平均数>最小的数
数学《平均数》教案 篇3
教学目标:
1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)
2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。
3.操作、交流的过程中,建立学习数学的信心,发展统计观念。
教学重点:
理解平均数的意义,学会求简单数据的平均数。
学具准备:
移动学具板 、作业纸
教具准备:
移动示范板 、 课件
教学过程:
一、放情景录像,预设认知冲突
1.谈话导入、回顾情景。
2.读懂统计图,获取相关信息
从这两幅图中你能知道哪些信息?
3.提出预设问题
这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?
二、自主探索方法,理解平均数的意义
1.引起争议,探求公正的策略
当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?
2.萌发求平均数的需求,得出有效途径求平均成绩
3.小组动手操作,探索求平均数的方法
那我们应该怎样求男生、女生各组的平均成绩呢?
4.全班交流,感知方法
(1)移多补少
(2)一般方法
男生:6+9+7+6=28(个) 284=7(个)
女生:10+4+7+5+4=30(个) 305=6(个)
男生组算式中的9、6、7、6和28各代表什么呢 ?
为什么女生求出的总数30除以5,而不是除以4呢?
5.理解平均数的意义
我们求出男生组平均每人套中7个 ,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?
小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。
6.新课小结,揭示课题 ,体会求平均数是解决这类问题的有效方法之一
三、感受平均数与生活的联系,体会平均数的作用
平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。
1.盐城去年全年平均气温在18摄氏度。
2.盐城市某小学三年级有10个班,平均每班人数为47人。
3.小明的语、数、外,三门考试,平均成绩为92分。
4.盐城市某小学三( 5 )班同学平均年龄为8岁。
现在我们就带着新朋友平均数,来解决我们生活中的'实际问题吧!
四、巩固强化,拓展应用
1.移铅笔 (93页第1题)
目的:体会移多补少的思想,加深对平均数意义的理解。
2.三条丝带的平均长度 (94页第2题)
目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。
3.辨析题(第94页 第3题)
目的:加深理解平均数的意义
4.综合性训练:
目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。
五、全课总结(略)
数学《平均数》教案 篇4
教学目标
1.理解平均数的含义,初步学会简单的求平均数的方法,理解平均数的统计意义。进一步积累分析和处理数据的方法,发展统计观念。
2.在具体的问题情境中,感受求平均数是一些实际问题的需要,体会平均数的意义,学习求简单数据的平均数。
3.感悟数学知识的现实性,体会平均数在现实生活中的实际意义及广泛应用。
学情分析
通过对任教的三年级(2)班学生进行课前调研,了解到全班59.1%的学生面对“比总数不公平”的情境,能够想到“先求出平均每人投中的个数再比较”的建议,但没有学生能够清晰地回答“为什么求出平均每人投中的个数再比较就公平了?”。退一步说,就算学生真正理解了其中的意义,那么“平均每人投中的个数”是否就能直接与“每人投中个数的平均数”画上等号?细微的文字表述差异的背后,又表征着学生怎样微妙的思维差异呢?
事实上,“求出平均每人投中的个数”,对于一个三年级学生而言,其心理活动的表征往往是“先求总和,再除以人数”。而这一心理运算对学生而言,其直观背景十分模糊。至于其最终运算后得出的结果又是如何成为这组数据的代表的,其意义的“联结点”对学生而言更是很难直接建立。由此可见,仅仅从“比较的维度”揭示平均数的意义,潜藏着学生难以跨越、且教师也很难察觉的认知障碍与思维断点。
于是,教师将备课的思维焦点再次落到“数据的代表”上来。能不能从“数据的代表”的角度,重新为平均数寻找一条诞生的新途径?于是,便有了本节课的尝试。
重点难点
教学重点理解平均数的含义,掌握平均数的求法。
教学难点理解平均数的统计意义。
教学过程
活动1【活动】一、建立意义
(一)体验平均数的代表性
1.谈话:
(1)上个星期,于老师和体育来老师比赛投篮,1分钟看谁投得多。
(2)想不想知道比赛结果?我给同学们提供一些数据,请你判断一下,我们俩谁投篮的水平更高一些。(课件分别依次出示来老师和于老师三次1分钟投篮的成绩)
2.提问:
(1)我们俩谁投篮的水平更高一些?为什么?
预设:分别计算出两位老师三次投篮的总数,进行比较,得出结论。
小结:在以前的学习过程中,要想比较谁的水平高我们经常先把总数算出来,看总数谁多。
(2)观察观察数据,还有别的办法很快地比较出我们俩谁的水平高吗?
预设:直接将两位老师每次投篮的个数进行比较,得出结论。
提问:为什么直接比5和3?
小结:如果每一次投篮的数量一样,那在这种情况下我们选一次的成绩作为我投篮水平的代表就可以了。
提问:选择哪个数量来代表来老师的投篮水平呀?那于老师呢?方便不方便?
【设计意图:创设“1分钟投篮比赛”的情境,精心设计数据,引发学生对平均数的“代表性”的理解。】
(二)强化对平均数意义的理解
1.谈话:不过,我可不服气,就找了一个理由:你是体育老师,我是数学老师,我要求再多投一次,结果来老师还真同意了,我就又投了一次。
2.提问:
(1)你们说于老师再投一次的话,会不会对我目前投篮的成绩有影响?
(2)想不想知道于老师最后一次投篮的结果?(课件出示于老师第四次1分钟投篮的成绩)
(3)我这次1分钟投了几个?我太高兴了,我为什么高兴呀?你们认为来老师会同意我的观点吗?
(4)你认为在这种情况下应该怎么比?
(5)我平均每次投中了几个?
a.谈话:有很多同学有自己的想法了,请你试着在图上圈一圈、画一画,或者在图下面写一写、算一算把你的想法表示出来。
b.谁愿意跟大家交流一下自己的想法?
方法一:移多补少
预设:从第四次投的7个中拿出3个分别给前3次各1个,就得到平均每次投中4个。
谈话:你这个办法可真好!这样一移实际就是把几次不相等的数匀乎匀乎,看起来每次都一样了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程有个名字就叫“移多补少”。(板书:移多补少)
【设计意图:首先利用直观形象的象形统计图呈现“移多补少”求得平均数的过程,而不是先通过计算求平均数,强化平均数“匀乎匀乎”的产生过程,帮助学生进一步直观理解平均数能反映一组数据的整体水平。】
方法二:先合后分
提问:还有同学用计算的方法算出了于老师平均每次投中的个数。谁愿意给大家介绍一下?
预设:3+3+3+7=14(个)16÷4=4(个)于老师平均每次投中了4个。
谈话:实际上就是把于老师四次投中的个数先全部合在一起再平均分成4份。(板书:先合后分)
小结:无论是移多补少,还是先合后分,目的就是要把原来几个不同的数变得一样多了,数学上我们把同样多的这个数就叫做原来这几个数的平均数。(板书:平均数)3、3、3、7的平均数是4。
提问:再来看看,来老师水平高还是我水平高,这种情况下我干嘛要用到平均数来比较我们俩谁的水平高呀?
【设计意图:帮助学生理解投篮次数不同的情况下,比较总数不公平。这时就需要用平均数作为几次投篮个数的代表来反映投篮的整体水平进行比较。加强学生对平均数在统计学上的意义和作用的理解。】
活动2【讲授】二、深化理解
提问:
1.那你们觉得于老师要是再投一次的话,这个平均数会不会发生变化?为什么?
2.我们举个例子来看看吧,如果我第五次就投了1个,你们觉得于老师投篮的整体水平是上升了还是下降了?为什么?(课件出示于老师第五次1分钟投篮的成绩)
3.你可没算,为什么你一下子就告诉我下降了呢?你是怎么判断出来的?
4.那我要想让我的投篮水平再上涨一点儿,你们觉得我得投几个?算算我投篮的水平上涨了没有?( 根据学生回答课件出示于老师第五次1分钟投篮的成绩)
5.要想让我投篮的整体水平上升点,你觉得我这次得投几个才行?(根据学生回答课件出示于老师第五次1分钟投篮的成绩)
【设计意图:初步认识了统计学的意义后,进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的敏感性,丰富学生对平均数的'理解。】
活动3【练习】三、拓展提升
(一)进一步丰富学生对平均数的理解
1.估计平均数(课件出示)
提问:
(1)不能算,直接看,有这样5个数据,估计一下平均数可能会是几呢?
(2)为什么一下就能想到平均数是5呢?平均数可不可能是2,为什么?
(3)真的是5吗?你怎么知道是5?用计算的方法会算吗?怎么算?
【设计意图:在估计的过程中,学生发现平均数总是介于最小数与最大数之间,强化学生对平均数意义的理解。】
2.判断直条所在位置(课件出示)
提问:
(1)仔细观察、认真思考,第五个数据如果我也要画一个直条,它会在这条红线上面?还是在红线下面?请同学们用投票器进行选择。
(2)来选一个代表,谁愿意告诉大家为什么在红线的下面?
【设计意图:变化思路,由已知平均数逆求部分数,加深学生对平均数意义的理解。】
(二)利用平均数解决问题(课件出示)
1.平均身高
提问:
(1)篮球队队员的平均身高是160厘米。李强是学校篮球队的队员,可是他的身高才155厘米。你觉得可能吗?
(2)那平均身高是160厘米是每个人都是160厘米吗?
(3)既然李强的身高是155厘米,根据这个信息猜想一下,可能有的同学身高是多少厘米呢?有可能超过160厘米吗?为什么?
【设计意图:学生借助平均数的意义进行推理判断,深化对平均数的理解。】
2.平均水深(课件出示)
(1)提问:
a.从图中你了解到了哪些数学信息?(冬冬身高130厘米 池塘平均水深115厘米)
b.冬冬心想,这也太浅了,我的身高130厘米,下水游泳一定没危险。你们觉得,冬冬的想法对吗?
c.冬冬的身高不是已经超过平均水深了吗?
(2)谈话:想看看这个池塘水底下真实的情形吗?(利用课件,呈现池塘水底的剖面图)
(3)小结:虽然平均水深能够很好地反映这条小河水深的总体情况,但并不能反映出小河某一处的深度。看来,平均数也不是万能的,如果使用得不恰当,也会给我们带来麻烦,甚至发生危险,今后我们还会研究中位数、众数……在具体应用的过程中还要联系实际去思考,平均数只有用在恰当的地方才能发挥它的作用。
【设计意图:处理这一题目时,教师适时呈现小河的截面图,并标注出5个距离,将复杂的问题简单化,达到学生仍能借助平均数的意义理解东东下水的危险性。在此过程中学生也会感悟到平均数在反映一组数据总体情况时存在的局限性,适时提出今后还要学习其它反映一组数据总体水平的统计量,做好统计知识由中年级到高年级的衔接。】