返回首页
微文呈现 > 短文 > 教学教案 > 正文

平面直角坐标系教案

2025/10/03教学教案

微文呈现整理的平面直角坐标系教案(精选4篇),汇集精品内容供参考,请您欣赏。

平面直角坐标系教案 篇1

【温故互查】

填空:

①规定了、的直线叫做数轴。

②数轴上原点及原点右边的点表示的数是;原点左边的点表示的数是。

③画数轴时,一般规定向(或向)为正方向。

【设问导读】

(一)平面直角坐标系

1、观察:在数轴上,点A的坐标为,点B的坐标为。

即:数轴上的点可以用一个来表示,这个数叫做这个点的。

反过来,知道数轴上的一个点的坐标,这个点在数轴上的位置也就确定了。

2、思考:能不能有一种办法来确定平面内的点的位置呢?

3、平面直角坐标系概念:

平面内画两条互相、原点的数轴,组成平面直角坐标系.

水平的数轴称为或,习惯上取向为正方向;竖直的`数轴为或,取向为正方向;两个坐标轴的交点为平面直角坐标系的。

4、点的坐标:

我们用一对表示平面上的点,这对数叫。表示方法为(a,b).a是点对应上的数值,b是点在上对应的数值。

(二)如何在平面直角坐标系中表示一个点

1、以A(2,3)为例,表示方法为:

A点在x轴上的坐标为,A点在y轴上的坐标为,A点在平面直角坐标系中的坐标为(2,3),记作:A(2,3)

2、方法归纳:由点A分别向X轴和作垂线。

3、强调:X轴上的坐标写在前面。

4、活动:你能说出点B、C、D的坐标吗?

注意:横坐标和纵坐标不要写反。

5、思考归纳:原点O的坐标是xx,x轴上的点纵坐标都是,y轴上的横坐标都是。即横轴上的点坐标为(x,0),纵轴上的点坐标为(0,y)

【自我检测】

1、下列语句,其中正确的是()

①点(3,2)与(2,3)是同一个点;

②点(0,-2)在X轴上;

③点(0,0)是坐标原点.

A.0个B.1个C.2个D.3个

2、写出图中的多边形ABCDEF各个顶点的坐标.

(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?

(2)线段CE的位置有什么特点?

(3)坐标轴上点的坐标有什么特点?

【巩固训练】

在下图中,分别写出八边形各个顶点的坐标.

【拓展延伸】

1.在平面直角坐标系中,点P(-3,4)到x轴的距离为,到y轴的距离为。

2.点P位于x轴的下方,y轴的左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是

平面直角坐标系教案 篇2

第1课时

1.1.1平面直角坐标系(一)

学习目标

1.回顾在平面直角坐标系中刻画点的位置的方法.

2. 能够建立适当的直角坐标系,解决数学问题.

学习过程

一、学前准备

1、通过直角坐标系,平面上的 与xx,曲线与 建立了联系,实现了 。

2、阅读P3思考得出在直角坐标系中解决实际问题的过程是:

二、新课导学

◆探究新知(预习教材P1~P4,找出疑惑之处)

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

问题3:

(1).如何把平面内的点与有序实数对(x,y)建立联系?

(2).平面直角坐标系中点和有序实数对(x,y)是怎样的关系?

问题4:如何研究曲线与方程间的关系?结合课本例子说明曲线与方程的关系?

问题5:如何刻画一个几何图形的位置?

需要设定一个参照系

(1)、数轴 它使直线上任一点P都可以由惟一的实数x确定

(2)、平面直角坐标系 :在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定

(3)、空间直角坐标系 :在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定

(4)、抽象概括:在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:A.曲线C上的点坐标都是方程f(x,y)=0的'解;B.以方程f(x,y)=0的解为坐标的点都在曲线C上。那么,方程f(x,y)=0叫作曲线C的方程,曲线C叫作方程f(x,y)=0的曲线。

问题6:如何建系?

根据几何特点选择适当的直角坐标系。

(1)如果图形有对称中心,可以选对称中心为坐标原点;

(2)如果图形有对称轴,可以选择对称轴为坐标轴;

(3)使图形上的特殊点尽可能多的在坐标轴上。

◆应用示例

例1.已知△ABC的三边 满足 ,BE,CF分别为AC,AB上的中线,建立适当的平面直角坐标系探究BE和CF的位置关系。(教材P4例1)

◆反馈练习

1.两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹。

解:

三、总结提升

◆本节小结

1.本节学习了哪些内容?

答:建立适当的直角坐标系,解决数学问题

学习评价

一、自我评价

你完成本节导学案的情况为( )

A.很好 B.较好 C. 一般 D.较差

课后作业

1. 已知点A为定点,线段BC在定直线 上滑动,已知 ,点A到直线 的距离为3,求△ABC的外心的轨迹方程。

2. (选做题)用两种以上的方法证明:三角形的三条高线交于一点。

平面直角坐标系教案 篇3

平面直角坐标系教案(精选11篇)

作为一位无私奉献的人民教师,常常要根据教学需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?以下是小编精心整理的平面直角坐标系教案,希望对大家有所帮助。

平面直角坐标系教案 篇4

1、教材分析:

⑴知识结构:日常生活及其它学科需要一种确定平面内点的位置的方法。在数学上,可以类比数轴,引出平面直角坐标系的概念。完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来。

⑵重点、难点分析:本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标。直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识。通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想。本节的难点是平面直角坐标系中的点与有序实数对间的一一对应。限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成。教材上只给出了比较简单的描述。教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然。

2、教学建议:数学是世界的一部分,同时又隐藏在世界中。这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用。因此,数学概念的产生有其必然性与合理性。

(1)概念的引入。组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的可以让学生进行讨论,他们的生活中还有什么类似的例子。如电影院中的.座位,到图书馆找书,学生的课程表等。从丰富的背景材料中,体会数学的广泛应用性。

(2)讲授概念:现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴。数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的这样利用数轴可以研究一些数量关系的问题。确定平面内点的位置的方法也可以与此类似,类比出平面直角坐标系的概念,并结合图形讲述平面直角坐标系的有关概念。

(3)练习,深入地理解概念:平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间。如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等。然后,就可以多练习一些简单题,如给出坐标,在平面直角坐标系中标点,或反之,给出平面直角坐标系中点的位置,找出其坐标。通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系。

总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解。在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构。在相互讨论评价的过程中,培养学生的责任心。

这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出平面直角坐标系的概念,并通过练习达到熟练的程度。第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目。如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等。

教学目标:

1、使学生进一步熟悉由坐标确定点和由点求坐标的方法。理解平面内的点与有序实数对之间的一一对应关系。

2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号。

3、掌握确定已知点关于坐标轴(或原点)的对称点的方法。培养学生观察,归纳总结的能力。

4、培养学生发现问题,主动探索的能力。在与同伴的合作交流中,培养学生的责任心。

5、渗透数形结合的思想,培养学生思维的严谨性和深刻性。

教学重点:

1、掌握象限或坐标轴上的点的坐标的特点。

2、会求已知点关于坐标轴或原点的对称点的坐标。

教学难点:理解平面内的点与有序实数对之间的一一对应关系。

教学用具:直尺、计算机

教学方法:合作学习,讨论,探究

教学过程:

1、提出问题,主动探索

上节课我们学习了平面直角坐标系的概念,并介绍了象限与坐标轴。初步体会到平面内的点与有序实数对是一一对应的今天我们需要开始新的探索,发现数学知识。

下面看例1

例1、指出下列各点所在象限或坐标轴;你能发现什么规律吗?

解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上。做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?

通过学生的分组讨论后,可总结如下:象限与坐标轴的定义都是以图形的形式直观给出的通过本例题,又总结出了相应的代数规律。渗透了数与形的结合。并培养了学生由特殊到一般的抽象思维能力。

练习:习题13.1的第三题

例2、在直角坐标系中,标出下列各对点的位置,并发现其中的规律。

(1)(3,5),(2,5)

(2)(1,2),(1,—3)

(3)(4,4),(6,6)