返回首页
微文呈现 > 短文 > 教学教案 > 正文

八年级下《平行四边形判定》说课稿

2025/10/17教学教案

微文呈现整理的八年级下《平行四边形判定》说课稿(精选4篇),汇集精品内容供参考,请您欣赏。

八年级下《平行四边形判定》说课稿 篇1

一、教材分析

1、教材的地位和作用“平行四边形的判定”是初中数学几何部分一节十分重要的内容。主要体现在知识技能和思想方法两个方面。从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想。综上所述,本节课不论从知识技能还是思想方法上,都是一节十分难得的素材,它对培养学生的探索精神、动手能力、应用意识和抽象建模能力都有很好的作用。

2、教学重点、难点由于学生探索到:“两组对边分别相等的四边形为平行四边形”和“两条对角线互相平分的'四边形为平行四边形”这两种判别方法后,由边和对角线数量关系分别判别四边形为平行四边形就比较容易解决,并且学生在探索过程中所经历的“观察—猜想—验证—说理—建模”的思维过程也是以后学习和认识世界的重要方法,具有广泛的应用价值,所以本节课的重点为探索平行四边形的两种判别方法,由于从理论上说明平行四边形的判别方法,对于几何逻辑思维尚处于起始阶段的八年级学生来讲,认知难度较大,所以本节课的难点是:平行四边形的判别方法的理解和应用,突破难点的关键是:采用教师引导和学生合作的教学方法及化归的教学思想。

二、目标分析

依据课程标准,结合学生的认知结构和年龄特点,从“知识技能、学习过程、情感态度”三个角度考虑,本节课确定以下教学目标。

三、教学过程分析

本教学过程的设计体现了建构主义的以创设“学习环境”为主要任务的理念。体现了以主动学习为核心的教学操作策略,体现了以学生为中心,以学习活动为中心,以学生主动性的知识建构为中心的思想。本教学过程设计体现以知识为载体,思维为主线,能力为目标的原则,突出多媒体这一教学技术手段在辅助知识产生发展和突破重难点的优势。基于这种教学理念,整个教学过程按以下流程展开:

教学过程流程图

下面我将从每一个环节教什么,怎么教,为什么这么教和教学目的控制等四个方面加以说明。

四、教法、学法分析

(一)本课在教法上突出了三个特点

1、动(师生互动):老师通过多媒体呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程。

2、变(多层变式):通过多层次、多角度例题变式,培养学生思维的广阔性和深刻性。

3、引(适当引导):在教学中对思维受阻的地方,教师通过层层铺垫,给予必要的引导,做到“引而不灌”,教师的引是为学生更好地学。通过这三个方面师生双边活动,最终实现:激发学生学习的潜能,鼓励学生大胆创新与实践,落实课程标准,推进素质教育的实施。

(二)在教学过程中,充分利用多媒体技术采用动画的形式,变抽象为直观,变复杂为简单,有效的突破重点,化解难点,同时加快了教学节奏,扩大了课堂容量。

五、评价分析

达尔文说过:“最有价值的知识是关于方法的知识。”本课围绕“方法比知识更重要”这一新的教学价值观,紧扣“方法”二字进行突破。在教学过程中注重学习方法,思维方法和探索方法的渗透。与此同时,关注学生的主体作用,通过激活学生的思维,促进师生和生生之间的互动,达到提高学生能力的目的。这正如英国的大教育家斯宾塞所说的:“教育中应尽量鼓励个人发展,应该引导学生自己进行探讨,自己去推论、去发现。”

八年级下《平行四边形判定》说课稿 篇2

一、教材的地位和作用

本节课的内容是实验教材几何分册第四章《四边形》的第二章节《平行四边形》的第三节课,是在学生学习了平行四边形的定义、性质,对平行四边形有了初步的认识的基础进行的。

本节课主要探讨平行四边形的判定方法以及判定定理的初步运用。在学生习得平行四边形的判定方法的同时,还应注重培养学生主动学习的能力和主动探索发现的能力。平行四边形是常见的一种几何图形。平行四边形的对边、对角和对角线的特征是平行四边形的最基本知识,也是探讨、推导平行四边形判定方法的出发点,另外,在探讨、严密地推导平行四边形判定方法的过程中,能培养严密的数学逻辑推理论证的科学态度。因此,它在初中的数学教学中占有重要的地位。

二、学生情况

八年级的学生刚刚进入论证几何的学习阶段,他们的数学表达能力和抽象思维能力有限,逻辑推理能力还不强,推导平行四边形的判定方法有一定难度。根据初中学生的心理生理特点,运用直观生动的形式,吸引他们的注意力,激发学生探究新知的兴趣,所以教学中安排学生动手画草图,在画草图的过程中得出合理的猜测,在推理论证过程中,提高学生的逻辑推理能力。另一方面数学教学中应积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学目标

按照新课程标准的教学目标的要求,根据学生的认知规律,心理特点和教材的特点制定以下教学目标:

1、掌握平行四边形的判定方法。

2、会运用平行四边形的判定定理,对有关平行四边形的几何习题进行证明。

3、通过实验操作、说理,推理论证,养成用数学语言规范表达的数学素养。

4、感受以前学习的实验几何和现在学习的论证几何的本质不同,体会到学习论证几何的重要意义。领悟“实验操作——合理的猜测——严密的推理论证——得出数学结论——运用数学结论”的数学探究方法。

5、在几个平行四边形的判定定理的推导过程中,体会化归的数学思想。

6、养成一种勇于探索、勇于质疑的精神;在实验操作的基础上,进行合理的猜测,进行严密的数学逻辑推理论证的`科学态度。

教学重点:平行四边形的判定方法的推导;在判定定理的推导过程中,体会化归的数学思想。会初步运用判定定理,进行有关平行四边形习题的证明。

教学难点:

1、通过实验操作,猜测出平行四边形的几种判定方法,并给予严密的推理论证。

2、感受以前学的实验几何和现在学的论证几何的异同,体会到学习论证几何的重要意义。领悟“实验操作——合理的猜测——严密的推理论证——得出数学结论——运用数学结论”的数学探究方法。

四、教学设计思路

整堂课的设计思路是“画图操作——得出合理猜测——进行严密的推理论证——得出平行四边形的判定方法——运用平行四边形的判定方法”。几次小组交流的安排,既注重学生小组间的交流,又注重不同小组间的课堂交流,体现“师生互动,生生互动”。

教学过程简介:

在复习了平行四边形的性质等知识后,出示本节课的第一个探究的问题:符合什么条件的四边形是平行四边形?——即平行四边形的判定方法。创设问题情景,激发学生的学习热情。这时出示画图操作题:如图,已知,平行四边形的一组邻边AB、BC以及它们的夹角∠ABC。请同学们以AC为对角线,把这个平行四边形ABCD补画完整。每个学生画出草图后,先在小组内及时交流、讨论。然后,用实物投影仪展示学生所画的草图。

在学生画出草图后,教师适时提问:从以上画图过程中,你可以得出什么结论?请用命题形式写出。学生分别得出命题:

两组对边分别平行的四边形是平行四边形(这是平行四边形的定义)。

命题1:两组对边分别相等的四边形是平行四边形。

命题2:一组对边平行且相等的四边形是平行四边形。

命题3:对角线互相平分的四边形是平行四边形。

命题4:两组对角分别相等的四边形是平行四边形。

以上命题是通过画图操作后,猜测得出的,至于这些命题是否正确,我们必须经过严密的推理论证,才能得出这些命题是真命题。命题的证明,我们应该根据命题,画出图形,写出已知、求证,然后,进行推理证明。

学生口述,老师板演命题的证明过程,老师适时点评。接下来,由同学们自己来完成其余几个命题的证明。(可分三个小组分工,每个小组学生完成一个命题的推导论证后,小组学生间及时交流,全班用实物投影交流、展示每个小组的学生证明的详细过程。得出命题2、3、4是真命题。)而要判断一个命题是假命题,只需举出一个不成立的例子(即反例)。

经过严密的推理论证,我们得到这四个命题是真命题。并且,这些真命题的结论在以后的几何学习中有较重要的作用,所以我们它们作为判定平行四边形的依据,得到四个判定定理。

利用以上平行四边形的判定定理,可以进行有关平行四边形的推理论证。

出示例题,在例题的讲评中,重视一题多解,并及时让学生对各种解法进行评价。

五、教学反思:

1、教学中成功的地方:

(1)、通过画图操作让学生直观地画出平行四边形的草图后,再通过得出合理的猜测,然后,再进行较严密的几何证明,得出平行四边形的判定方法,这样的教学设计比较成功。

(2)、本节课中很注重数学文字语言、数学符号语言以及数学图形语言这三种数学语言之间的转化。

(3)、在命题证明的教学中,有效地渗透了化归的数学思想,体现平行四边形的四个判定定理之间的内在联系。

2、教学中有待改进的地方:

(1)、小组学习讨论的形式虽然可以培养学生间的团结协作精神,但另一方面也削弱了每个学生的独立思考能力的培养,应该妥善安排小组讨论的时间。

(2)、由于本节课一下子习得了平行四边形的四条判定定理(按常规需两节课的时间),所以,为了保证能运用判定定理解有关平行四边形的习题,进行练习巩固,故整堂课有点前松后紧的现象。

3、提升学生的学习能力

以往在教学中我们特别关注了知识的传授与获得,而忽视了学生在习得知识过程中的反思、领悟。其实如何提高学生对所习得的知识综合运用能力,重点应放在改善学生的学习行为上,使学生“乐思、会思、善思”。

4、提高学生的自主评价能力

在课后,留出三分钟至五分钟的时间,让学生交流课堂上的各种体会、疑惑以及收获。学生充分的交流了知识上的点点滴滴的收获,能力上的提高、进步,数学方法、数学思想的掌握和领悟,也培养了辩证唯物主义的哲学思想。所以,课堂上经常鼓励学生发表自己的观点、见解是十分重要的。

八年级下《平行四边形判定》说课稿 篇3

我是来自实验学校的杨xx,我今天说课的内容是人教版义务教育课程标准实验教科书八年级下册19、1、2平行四边形的判定第一课时。我将由教材分析,教学目标、教法、学法、教学过程、课堂评价这6个方面向大家介绍我的设计构思。

一、教材分析

四边形是我们生活与生产实践中应用广泛的图形,平行四边形作为四边形的重要研对象,对以后特殊四边形的学习有重大作用。本堂课是在学习了平行四边形的定义和性质定理的基础上,进一步探究平行四边形的判定定理。因此它的作用与地位体现在以下三个方面:

1、是平行线与全等三角形知识的应用与延伸。

2、对以后矩形、菱形、正方形、梯形等特殊四边形的判定学习奠定基础。

3、.对加强学生逻辑推理能力和思维的严密性有积极的意义。

本节课的重点在于探究平行四边形的两种判定定理。难点在于理解和灵活运用平行四边形的判定方法。为了更好的突出重点,突破难点,关键在于通过问题情境的设计,课堂实验研讨,引导学生发现,分析并解决问题。

学情分析

初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。

二、教学目标分析

《数学课程标准》中明确指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续和谐的发展。学生在获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步与发展。基于此,我将这节课的教学目标制定如下:

1、知识与技能——掌握平行四边形判定定理,并会运用判定定理解决相关问题。

2、方法与过程——探索两种组成平行四边形的方法。由此发现平行四边形的'判定,体验教学活动充满着探索性和挑战性。

3、情感态度价值观——经过自主探究与合作交流,敢于发表自己的观点,有团结协作和合作意识。

三、教法分析

在本堂课的教学中,我将主要采用两种教学方法:

1、引导启发——在本节课的教学中,教师所起的作用不再是一味“传授”,而是巧妙地创设问题情境,启发学生发现、解决问题,在学生思维受阻时给予适当引导。

2、激趣教学——学习本应是件快乐的事,为了让学生“乐”学,我将通过实验,抢答等游戏极大的激发学生的学习兴趣,提高学习的效率。

四、学法分析

在合理选择教法的同时,还应注重对学生学法的指导,本节课主要指导学生以下两种学法:

1、自主探究,本节课的两条判定定理都是通过学生的动手操作、观察、猜想、推理等活动得出的,使学生亲历了知识的发生、发展、形成的全过程,从而变被动接受为主动探究。

2、合作学习,教学中鼓励学生积极合作,充分交流,帮助学生在学习活动中获得最大的成功,促使学生学习方法的改变。

五、教学过程分析

为了更好的完成教学目标,我设计了以下教学流程:

流程1:复习定义性质,引发思考

首先给出一些平行四边形的图片和图形,让学生说出平行四边形的定义和性质定理,然后在纸上写出定义和性质的逆命题。

这样设计的目的在于复习前面的知识,为新课奠定基础,向学生说明定义既是平行四边形的性质也可以作为判定平行四边形的方法。提问:除了定义,同学们还想知道其他判定平行四边形的方法呢?这就是我们今天要学的“平行四边形的判定”

流程2:创设情境,引出新课

让学生用课前准备好的学具,完成活动1。

活动1的设计,是为了让学生动手操作,经历将两两相等的木条,作为对边得到平行四边形的过程,体验“发现”知识的快乐。

流程3:命题论证,得到判定

证明这一命题是个难点,首先指导学生根据命题画出几何图形,写出已知求证。证明过程采用学生先独立思考。小组合作,再由教师引导,把证明平行四边形的问题逐步转化为证明线平行——角相等——三角形全等的问题。突破难点,体现划归的思想。

流程4:引发猜想,得到命题

让学生继续动手,完成活动2.。得出命题2:对角线互相平行的四边形是平行四边形。在此活动中,教师应重点关注学生操作的准确性。

流程5:命题证明,得出判定。

命题2的证明,鼓励学生用类比的思维方法仿照命题1的证明,独立思考,小组内交流意见,教师关注学生能否用不同的方法从理论上证明自己的猜想和发现,以及学生使用几何语言的规范性与严谨性。

流程6:应用判定,小试牛刀

这三个小题是对判定的直接应用,采用小组抢答的方式来完成,其他小组作出评价,既检验学生对新知识的掌握情况,又活跃了课堂气氛,同时让学生体验到成功的快乐。

流程7:例题讲解,练习巩固

出示例题给予足够的时间让学生独立思考,小组合作,由不同的学生表述自己的思路,教师展示学生的不同方案,对于有创意的方案要大力表扬,然后引导学生从多种证明思路中,选择较为简洁的方法,规范板书。

然后出示练习题,1、2体学生独立思考口答完成填空,3小题小组合作探讨,整理思路,写出解题过程。

流程8:小结本课,布置作业

引导学生多方面,多角度说出自己的收获,可以是知识方面的,也可以是数学思想方法,还可以是自己的感受,只要学生的收获,都应得到肯定。

六、课堂评价分析

对于数学学习效果的评价,既要关注学生知识与技能的理解与掌握,更要关注他们情感与态度的形成与发展。在教学各环节中,我注重采用学生自我评价,学生互评,教师评价相结合,实现评价主体多元化;采用口试,课堂观摩,课后作业等多种形式,多层面了解学生,在学习过程中,从学生参与教学活动的程度,合作意识,思考习惯,发现能力几方面,及时调控教学进程。

总之,我这堂课的设计理念来自于建构主义思想,以学生为中心,强调学生对知识的主动探索,主动发现和对所学知识意义的主动建构,因此创设学习环境是主要任务,体现学生主动学习是这堂课的核心内容。

以上就是我对《平行四边形的判定》这堂课的构思设计,我的说课到此结束,谢谢大家。

八年级下《平行四边形判定》说课稿 篇4

一、教学目标

经历探索平行四边形判别条件的过程,培养学生操作、观察和说理能力;掌握两组对边分别相等的四边形是平行四边形这一判别条件。

二、教材分析

本节课是在学生学习了平行四边形的两个判定定理之后即将学习的第三个判定定理——两组对边分别相等的四边形是平行四边形。

三、教学重难点

重点:探索并掌握平行四边形的判别条件。

难点:对平行四边形判别条件的理解及说理的'基本方法的掌握。

四、教学准备

两根长40厘米 和两根长30厘米的木条

五、教学设计

首先复习平行四边形的定义,然后通过学生活动发现平行四边形的另一判定定理,然后借助各种方法加以验证。最后依靠课本所设计的“做一做” ,“议一议” 以及“随堂练习”加深对平行四边形判定定理的理解。

六、教学过程

1、复习平行四边形的定义。(旨在为证明一个四边形是平行四边形做铺垫)

2、小组活动

用两根长40厘米和两根30厘米的木条作为四边形的四条边,能否拼成平行四边形?与同伴进行交流。

(通过小组活动,学生亲自动手操作,得出结论——当两组对边相等时,四边形是平行四边形;对边不相等时,所围成的四边形不是平行四边形)。

平行四边形的判定定理——两组对边相等的四边形是平行四边形。

3、课本91页的“做一做”

(其目的是巩固和应用“两组对边相等的四边形是平行四边形”的判定定理。)

4、“议一议”

问题1、一组对边平行,另一组对边相等的四边形一定是平行四边形吗?说说你的想法。

(先鼓励学生自主探索,再分组讨论,最后全班交流得出正确结论)

问题2、要判别一个四边形是平行四边形,你有哪些方法?

5、通过课本的“随堂练习”,使学生对平行四边形的判别条件加以应用和巩固。