圆环的面积教学反思
微文呈现整理的圆环的面积教学反思(精选4篇),汇集精品内容供参考,请您欣赏。
圆环的面积教学反思 篇1
环形面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。
教学时,我首先在学习情境的创设时,非常关注学生的生活经验和已有的知识体验。奥运五环,是学生非常熟悉的,关注了学生的`生活经验。同时,课开始环节利用奥运五环中的一个圆环,又起到了复习圆面积计算的作用,关注了学生已有的知识体验,为后面探究环形面积的计算作了很好的铺垫。其次,在本节课中,我重点引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。先让学生观察阴影部分的图形有什么特征,通过大家的积极讨论和研究,很快得出了圆环的定义,让学生动手摸一摸外圆和内圆,把外圆和内圆观察的非常到位。做到让学生参与教学过程,激发学生的学习兴趣。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。最后让学生自学例题,使学生的自主学习得到充分发挥,学会小组合作学习,在愉悦、轻松的氛围下获得知识。
通过本节课的教学,我感受到切实了解学生,让学生参与到教学过程中,充分的信任学生,既能够使课堂气氛非常的活跃,对提高教学效果也起到了事半功倍的作用!
圆环的面积教学反思 篇2
教学内容:
圆环的面积计算,简单组合图形面积的计算。
教学目标:
1、使学生认识以圆环,掌握圆环的特征,掌握计算圆环面积的方法。
2、培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。
3、会计算组合图形的面积,能根据各种图形的特征和条件,有效地选择计算方法。
教学重、难点:
1、掌握计算圆环面积的方法。
2、掌握求简单组合图形面积的方法。
教学方法:
例证法、类比法、迁移法。
教学过程:
一、复习引入
1、圆面积的计算公式
2、计算圆的面积
r=5厘米d=6米C=15.7分米
二、探索新知
1、出示实物,认识圆环
出示光盘。提问:谁能用语言描述这个光盘?
2、实践操作,感知圆环
(1)刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?
学生用一张白纸剪一个圆环。
(2)学生操作,动手剪环形。(教师巡视指导,帮助学有困难的学生)
(3)说出剪圆环的过程。
让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的'面积。
3、探究环形面积的计算方法。
(1)小组讨论:如何计算圆环的面积?
(2)反馈讨论结果。
学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。
思考:要计算环形的面积需要什么条件?
通过师生交流后,明确要计算环形的面积需要知道外圆(大圆)的半径或直径和内圆(小圆)的半径或直径。
4、应用新知,解决问题。
(1)出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?
(2)读题,理解题意。
(3)分析数量关系。
(4)尝试解答。
(5)反馈解答情况。
方法1:大圆的面积—小圆的面积。
方法2:大圆半径的平方与小圆半径的平方差乘以3.14。
观察比较这两种解法,有什么不同?
师生交流,引导学生发现:通过乘法分配律,这两种方法可以相互转化,其实它们是一致的。
小结:圆环面积的计算方法,大圆的面积—小圆的面积=圆环的面积。
学生尝试用字母表示求圆环面积的计算公式。
圆环的面积教学反思 篇3
圆环的面积教学反思
作为一名人民老师,我们要有一流的教学能力,通过教学反思可以很好地改正讲课缺点,快来参考教学反思是怎么写的吧!以下是小编整理的圆环的面积教学反思,希望能够帮助到大家。
圆环的面积教学反思 篇4
本节课的学习目标是认识圆环,掌握圆环面积的计算方法;利用圆环面积的知识解决生活中的实际问题。一上课,我先让学生进行快乐填空,把圆的面积计算公式以及直径与半径的关系作为知识铺垫,预习展示环节设计了三道小题,掌握了圆的面积计算方法,紧接着就设计了两道计算题,一道是 已知半径求面积,一道是已知直径求面积,每组的1号同学板演,2号批改。结果发现知识掌握比较牢固。第三个小题是检测对新知识的预习效果,画出圆环的外圆半径。学生经过预习展示,收获颇多。
课堂顺利进入交流展示环节,我首先组织大家小组合作说说圆环的'特点,并讨论圆环面积的计算方法。汇报展示时根据同学们的总结课件出示圆环的特点,两个圆的圆心在同一个点上,也就是同心圆。俩圆之间的距离处处相等。然后先自主学习例2,独立计算圆环的面积,这时,我让每组的2号同学板演。当大多数同学都准确计算出结果时,我看着讲台上的4位同学,心里一愣,怎么会是这个结果呢?刚才如果让4号上台多好啊!时间的关系我立即让他们停了下来,通过评讲发现,4人中仅有一人做对了,其余三人都是计算错误。这也暴露了一个问题,三位数乘法计算掌握的不够好,有的计算了两位就写出了结果,有的虽然计算方法正确,但准确率低。对照学生的板书,我及时让大家观察,怎样计算比较简便?大家一致认为郭江龙的计算简便,他利用了乘法分配率使运算简便。为了让学生好记,我和学生又一起推导出圆环的面积计算公式:S环=3。14×(R2—r2)。然后,看着公式我又追问:要想求圆环的面积,必须知道什么条件?学生异口同声答道:必须知道R和r。如果没告诉怎么办?学生一起研究R、r和环宽之间的关系。得出:R—r=环宽。
课堂进入反馈展示环节,我放手让学生自己独立完成两个习题,结果做的还是不理想,很多同学出错。反思一下自己的教学,原因有三点:
1、第一小题是告诉了大圆的直径和小圆的直径,没有直接告诉R和r,必须先求出来,比例题多了两步,造成有些学生列综合算式出错。
2、圆环这节课虽然比较简单,但毕竟是一节新授课,学生原来对这方面的知识一无所知。每一点,每一步都需要老师的指导、演示。
3、要提高计算能力,还必须牢记一些常用的数字,如2π、3π ……9π以及计算公式。
在教育过程中,一定要遵守教育教学规律,不能操之过急,不能拿自己的水平去要求学生。学生的学习需要一个循序渐进、螺旋上升的过程。只有这样,学生才会进步,才会有收获。
返回首页