数学说课稿
微文呈现整理的数学说课稿(精选4篇),汇集精品内容供参考,请您欣赏。
数学说课稿 篇1
一、教材分析
1、教材的地位和作用
本课是我校七年级备课组基于新人教版实验教科书七年级下册第五章第三节学习完成自主开发的一节复习课。
主要内容是让学生在以了解的几何性质及判定定理的基础上进一步开展几何推理解题途径思考——逆向思维。
逻辑推理是初中数学几何部分一节十分重要的内容,而开展新思想方法的训练也突显出其重中之重。其主要体现在知识技能和思想方法两个方面。
本课时既是对前面所学的平行线性质及判定定理的一个回顾和延伸,又是为以后学习几何证明反正法打下坚实的基础,同时它还进一步培养学生的推理能力和图形迁移能力。本节课不论从知识技能还是思想方法上,都是一节十分难得的素材,它对培养学生的探索精神、动手能力、逻辑推理能力、应用意识和抽象建模能力都有很好的作用。
2、教学重点、难点
由于学生掌握到:“平行线的判定方法”和“平行线的性质”后,能较顺利完成简单的“角的关系直接得直线平行”或由“平行线直接推得角的关系”,在此基础上引导学生体会逆向思维方式在解决平行线有关问题,经历的“观察—猜想—说理—验证”的思维过程也是以后学习和认识世界的重要方法,具有广泛的应用价值,所以本节课的重点为在平行线判定方法及平行线性质的`进一步理解运应用基础上了解与应用逆向思维解决问题。由于从说理方法来看,对于几何逻辑思维尚处于起始阶段的七年级学生来讲,认知难度较大,所以本节课的难点是:运用逆向思维解决平行线有关问题。突破难点的关键是:采用教师引导和学生合作的教学方法。
二、目标分析
依据课程标准,结合学生的认知结构和年龄特点,从“知识技能、学习过程、情感态度”三个角度考虑,本节课确定以下教学目标。七年级学生对几何说理缺乏足够深度和广度,只有通过“探索”这样特定数学活动,获取一些经验方法,逐步形成较为完善严密的几何说明体系。知识技能目标。
1、进一步熟悉和掌握几何语言能用语言说明几何图形。进一步熟练运用“平行线的判定方法”和“平行线的性质”解决有关几何问题并会进行说理(通过阅读课标,分析教材,本节课的重点为平行线判定方法及平行线性质的进一步理解运应用,而作为解决重点的方法不是让学死记,而是主动尝试与探索。)
2.了解应用逆向思维方式分析问题。(课标要求“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识”所以数学思维方式训练显得越来越重要,同时在初步掌握的基础上又应用具体问题情境中。过程与方法目标经历运用“平行线的判定方法”和“平行线的性质”解决有关几何问题过程,在活 动中发展学生的合情推理意识,使学生逐步掌握说理基本方法。新旧教材设计不同,学生较之以往,逻辑推理能力有所下滑,对判别条件说理有一定难度,但动手能力、创新能力变强,那么有针对性地组织学生进行探索,就成为突破教学瓶颈和培养学生学习品质的有效手段,这也成为落实新的教育理念到课堂的关键。 情感态度目标通过平行线有关几何问题探索的过程,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。
三、教学过程分析
本教学过程的设计体现了建构主义的以创设“学习环境”为主要任务的理念。体现了以主动学习为核心的教学操作策略,体现了以学生为中心,以学习活动为中心,以学生主动性的知识建构为中心的思想。本教学过程设计体现以知识为载体,思维为主线,能力为目标的原则,突出多媒体这一教学技术手段在辅助知识产生发展和突破重难点的优势。基于这种教学理念,整个教学过程按以下流程展开:
四、教学过程流程图
创设情境→复习巩固→例题学习→设问质疑→建立模型→实验验证→说理尝试→抽象建模
→变式应用→反馈拓展→小结→布置作业
数学说课稿 篇2
一、说教材
(一)说课内容
《乘法估算》是义务教育课程标准实验教科书数学三年级下册p59页的教学内容,包括例2以及相关的练习。
(二)教材简析
本课是在三年级上册两位数乘一位数的乘法估算的基础上来进行学习的。此前学生已经掌握了整十整百数乘法的口算方法,能进行两、三位数乘一位数的估算。学好本节课内容,能为今后学习多位数除法估算以及除数是两位数的除法计算做好知识上的准备。
(三)教学目标
根据“新课标”的理念,结合学生的知识现状和年龄特点,我制定了以下教学目标:
1、结合具体问题情境让学生经历两位数乘两位数的估算过程,培养学生的估算意识,初步理解估算方法。
2、给学生创设主动探索估算知识的空间,解释估算过程,培养学生的数感,进一步提高学生的比较推理能力。
3、培养学生学习数学的兴趣,感受数学与生活的紧密联系。
(四)教学重、难点:
重点:掌握两位数乘两位数的估算方法,培养估算意识。
难点:合理选择估算方法解决生活中的数学问题。
二、说教法学法
1、说教法:为了培养学生估算的意识,我设计了估座位数、准备钱买书、师生互动等生活场景,激发学生的主体探究热情,让学生主动结合生活情境进行估算。
2、说学法:本课设计力求突出“自主学习实践感知”的特点,采用个体探究、小组合作的学习形式,创设有利于学生参与探索活动的学习情境,使学法与教法和谐统一在“促进学生能力发展”这个教育目标上。
三、说教学过程
为达到本节课的'教学目标,我从以下五个环节设计教学。
1、复习铺垫引出新知
2、创设情景自主探究
3、应用提高巩固深化
4、实践生活升华教育
5、互动总结课外延伸
(一)复习铺垫,引出新知
1、口算
20×20=24×10=40×50=12×30=
2、下列算式,你能估算各题的结果吗?你是怎样想的?
28×4≈62×7≈
[这里通过复习旧知,抓住知识的内在联系,为知识的迁移做好铺垫,并由此引出课题。]
板书:《两位数乘两位数——乘法估算》
(二)创设情景,自主探究
1、创设情景,引出主题
由全镇各校都在开展气象知识学习的情况入手,以气象局的叔叔来我校开展气象知识讲座为情境,出示主题图,并让学生完整地说一说你收集到了哪些信息?
紧接着问:“能坐下吗?”是什么意思?[引导学生明白,“能坐下吗?”其实就是要将座位数和人数作比较。]
又问:要比较座位数与人数的大小,必须先求出什么?(座位数)你会列式吗?(板书算式:18×20)
再问:只要比较座位数与人数的大小,需要知道准确的结果吗?(不需要)既然不需要,那我们就试着用估算去解决会比较便捷一点。
2、尝试估算,探索方法
让学生先独立完成,再小组交流,学生汇报,教师板书。
……
方法小结:两位数乘两位数的估算,它与一位数乘两位数的估算方法相类似,估算时可以把其中的一个两位数看成整十数,也可以把两个两位数都看成整十数,再用口算确定估算结果。但同样是估算,为什么会出现几种不同的结果呢?
3、巧理信息,探究明理
根据学习卡(一)的内容,四人小组交流误差产生的原因,完成学习卡,小组汇报。
根据学生汇报的结果分析小结:估算的时候我们可能把因数看大了,这时估算的结果比实际结果大,也可能会把因数看小了,这时估算的
结果比实际结果小,不同的估算方法会有不同的估算结果,但都会与实际的结果之间存在一定的误差。
[这样设计促进学生在问题情景中积极参与,把探究的过程留给学生,运用生活素材,激发学生学习兴趣,促进主动全面参与意识。]
4、运用策略,解决问题
刚才我们用了3种不同的方法进行估算,得出3种不同的结果,那350人到底能不能坐下呢?
引导学生在刚才讨论的基础上,逐步理清,在第(3)种方法中,采用估小的方法得到的360都大于350,那么实际结果应该比360还要大,肯定能坐下350人。
同时指出:虽然估算的方法有很多,但在这道题中,用估小的方法来进行估算,相对而言比较有把握解决“够不够坐”的问题。
[这样设计使学生在已有的知识基础上,通过分析比较、合作交流、层层递进的认知环节,逐步形成了估算策略,从而让学生实现从多样化到最优化的过渡。]
5、指导看书,质疑释疑
(三)、应用提高,巩固深化
1、随堂练习,检验效果
让学生独立完成书本p62第10题第一行和书本p59做一做。
[这样做是从本课的教学重点出发,在巩固新学知识的同时,还可以让学生品尝到成功的喜悦,达到本节课的的教学目标。]
2、配对练习,突破难点
《气象知识知多少》这本书每本19元,李老师决定买12本,你认为李老师大约应该准备多少钱?
在引导学生列出算式后,让学生帮老师拿个主意,应该选择下面哪种建议?
A、12看成1010×19=190(元)
B、19看成20xx×20=240(元)
在学生的争论中,让学生逐渐明白:像这种准备钱购物的情况应该尽量选择估大的方法来进行估算,才能更为有效地解决问题。
同时作出小结:两位数乘两位数的估算,由于因数的不同特点,估算的方法可能有几种,但我们在解决不同的情景问题时,一定要考虑具体情况,灵活地选择合适的估算方法。
[本题练习设计和例题教学分别从两个不同的角度来分析解决问题,使学生初步体会根据具体问题情境来选择估算方法,有效提高估算能力,掌握估算的策略。]
(四)、实践生活,升华教育
设计学生采访的师生互动环节,巩固所学知识。
内容A、我们组采访的是()老师,他家每月水费支出大约是()元,一年大约支出水费元。我们是这样估算的。
内容B、我们组采访的是()老师,他每天批改作业()本,每个星期(5天)大约批改作业本,每学年(40个星期)大约批改作业本。
看到这么大的数字,你有什么感受或想法?
[这个环节的设计体现了数学的应用性,在这个过程中不但提高了学生估算的应用能力,还让孩子们在估算中体会到老师工作的艰辛,老师适时对学生进行思想教育,实现教育升华。]
(五)、互动总结,课外延伸
互动总结:在今天的学习中你有什么感受?又有什么收获呢?
课外延伸:请你把你是怎样用估算来解决实际问题的小故事记录下来,写一篇生动的数学日记。
[这样设计促使学生把本节课的学习兴趣延伸到课外,从而体现数学学习的“大课堂”思想。]
四:说板书设计
两位数乘两位数——乘法估算
18×22≈
18×22≈40018×22≈44018×22≈360
(20)(20)(20)(20)
卡通头像卡通头像卡通头像
答:能坐下。
数学说课稿 篇3
一、说教材
我说课的内容是九年义务教育人教版六年制小学数学第十一册第二单元52页例2和例3——比的应用,在本册教材中主要就是按比例分配。
之所以将例2和例3放在一节课,主要是为了形成知识的层次和渐进,以利于通过知识点的对比,让学生坚定对知识的感知结果。
按比例分配是把一个数量按照一定的比进行分配,它是在学生学习了“平均分”和“分数应用题”的基础上进行教学的延伸。教材是采用把比化为分数,用学生前面已学过的分数的知识来解答。这样安排学生容易接受,不仅加深了对分数应用题的理解,还有利于加强知识间的联系,为今后学习正反比例等知识打下基础。
二、说学生
六年级的学生在分析问题和综合运用知识方面具有一定的能力,而我班大部分学生思维活跃,能结合自己已有的知识去分析问题,学习新知识,具有一定的自学能力和实践操作能力。
三、说教学目标
1、使学生明确按比例分配是比的应用,又是“平均分”的发展,明确按比例分配的意义和作用。
2、让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题。
3、培养学生观察分析和动手操作以及自学能力,促进能力的发展。
在轰轰烈烈进行基础教育课程改革的今天,如何面向全体学生,使学生得到充分、自由、和谐、全面的发展是制定课堂教学目标的主导思想。因此,为此,依据《数学课程标准》,我制定了这堂课的以上三个教学目标。
四、说重难点
重点:按比例分配应用题的特征和解答方法
难点:让学生知道“把什么数量按什么比例”进行分配
按比例分配应用题具有典型的特征,理解并掌握了这种特征,就能正确地运用这一知识去解决实际问题。
而把什么数量按什么比例进行分配,则往往是很大一部分学生感觉比较困难的,因此将其作为难点。主要将采用“自学——比较——应用”的方式来突出重点,突破难点。
五、说教法和学法
本节课主要采用操作实践,复习引入,指导自学,分析比较,实际应用等教学法。
推广素质教育的主渠道在于我们的课堂教学,如何把学生由被动听变为主动参与,关键在于要打破传统的灌输式教学模式。因此,我们要树立起尊重学生,相信学生,放手让学生主动学习的观念。针对这种教学思想,本节课的教学,要注意以下几个问题:
首先要营造一个愉快、和谐、民主的课堂气氛。
应该通过老师的语言、动作、表情,传递给学生一种亲切、鼓励、信任的情感意识,形成和谐的课堂氛围,从而有效地引导学生主动学习,体现学生学习的主体地位。
其次是要调动学生学习的主动性,激发学习兴趣。采取的手段主要是让学生动手操作,初步感知。安排动手操作,促使学生多种感官的参与,在“平均分”的基础上进一步感知“按比例分配”的概念。
第三就是指导自学,培养自学能力。
让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。
第四就是重视应用,正所谓“学以致用”,这样既可以检验学生的学习情况,又可以巩固学生在本节课所学的知识,可谓一举两得。
六、教学程序
本课的教学程序共分为两个部分:
第一部分主要解决什么是按比例分配,采用分石子的实际操作法,让学生通过动手操作,从而感知,以加深学生对按比例分配的理解;第二部分主要解决怎么按比例分配的问题。
要让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题,就必须要首先让学生理解什么是“按比例分配”,而采用分石子的实际操作法,即结合农村学生的实际,又让学生通过动手操作来感知,既贯彻了新课程理念,又体现了学生学习的主体地位,更是为了实现教学目标,突出重点,突破难点。
第一部分
什么是“按比例分配”
操作感知,导入新课。
在实际情境中理解按比例分配【《数学课程标准》第21页】
以同方为单位分一分
(这样有利于培养学生的合作学习的能力)
(1)、按1:1把8颗石子分成两部分。
(2)、按2:1把8颗石子分成两部分。
通过动手操作,让学生感知第一种情况是“平均分”,而第二种情况不是“平均分”。说明在我们日常生活和工农业生产中,除了“平均分”以外,还常常要把一个数量按照一定的比来进行分配,除了第一种情况是“平均分”外,还有第二种情况,由此导入新课,“按比例分配”。
这样安排导入有利于学生把握知识的发展变化与延伸,从而激发学生学习兴趣。
第二部分
怎样按比例分配
(一)、复习
(1)、甲数是8,乙数是10,则甲数是乙数的( ),甲数与乙数的.比是( ):( )
(2)、第52页出示复习题:一个农场计划在100公顷的地里播种60公顷小麦和40公顷玉米;小麦和玉米的播种面积各占这块地的几分之几?小麦和玉米播种面积的比是多少?
这样安排,目的是把握新旧知识和连接点,为分散难点起着积极的迁移作用。
(二)、自学
1、提出问题,让学生有目的的自学
先出示自学要求:这道题分配的是什么?按照什么来分配?播种小麦和玉米的面积比是3:2,表示播种小麦和总播种面积的比是几比几?播种的小麦占总播种面积的几分之几?玉米的面积与总播种面积的比是几比几?播种的玉米占总播种面积的几分之几?
老师引导学生尝试,让学生自学课本例2。其目的是让学生自己在课本中找出解决问题的方法。
2、学生小组自学,教师进行指导
小组自学是合作学习的重要形式,它有利于培养学生的合作意识,这也是新课程要求的要培养学生的能力和品质之一。
3、学生汇报,师生共同解题
先检查自学情况,师生共同简略解决例2
然后让学生汇报:把谁按什么比例分配
4、自学例3
让学生在学习、理解了例2的基础上自然的过渡到例3,并运用例2的技能来解决例3,使学生实现知识和技能的迁移以及综合运用。
5、比较例2、例3
例2是把总面积100公顷按3:2进行分配,例3是把总棵树按3个班的人数所占比例进行分配。
这样做的目的是通过比较,让学生知道,按比例分配既可以是2个量比,还可以是3个或3个以上的量比。
(三)、练习
多层次训练,巩固新知识,形成技能。
练习是数学课堂教学一个重要环节,练习力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融洽恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。
1、基础练习
某班男女学生人数的比是9:4,男生占全班人数的( ),女生占全班人数的( )。
这个练习用采分散难点,促使知识结构的内化。
2、对应性练习。
62页的“做一做”第1题
采用讲练结合的形式巩固所学知识,让学生在学习新知之后即时得到巩固。
3、综合性练习。
(1)甲、乙两数的平均数是50,甲和乙的比是7:3,甲、乙两数各是多少?
(2)一块长方形地周长120米,长和宽的比是3:1,它的长和宽各是多少米?
这种练习旨在加强对比,提高学生分析和综合运用知识的能力。
(四)、运用
混凝土,石子、沙和水泥的比是3:2:5,现在有20吨水泥,需要多少石子和沙才能生产出这种合格的混凝土?
有了基础知识,并不等于拥有了技能。只有在掌握了基本知识方法的同时,教师大力提供应用时空,让学生自主地运用“双基”去解决实际问题,才能使学生形成技能和对知识与方法的迁移应用能力,应用已有的知识与方法去解决全新而又生疏的实际问题,这一点对于创新能力和创新精神的培养非常重要。
(五)、全课总结
你学会了什么知识?掌握了哪些方法?
这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。
数学说课稿 篇4
说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。
因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= 1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的`图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。
这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。
作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)
设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。
4、巩固达标(见课件)
这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。
5、反馈练习(见课件)
习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。
6、归纳总结(见课件)
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
7、课外作业 :(1)完成P178 A组1、2、3题
(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?
五、说板书
板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。
返回首页