返回首页
微文呈现 > 短文 > 教学教案 > 正文

《比例的意义》教学教案

2026/01/05教学教案

微文呈现整理的《比例的意义》教学教案(精选4篇),汇集精品内容供参考,请您欣赏。

《比例的意义》教学教案 篇1

教学目标:

1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:

理解比例的意义基本性质。

教学难点:

应用比例的意义和性质判断两个比是否成比例。

教学过程

一、导入新课

1、什么叫比?

2、求出下面各比的比值(小黑板)

12:16 1/4:1/3 和9:12 4.5:2.7 10:6

二、教学新课

1、教学比例的意义

(1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

(2)归纳比例的意义

(3)2:5和80:200能组成比例吗?你是怎样判断的?

(4)完成第45页“做一做”

2、教学比例的基本性质

(1)在一个比例里,有四个数,这四个数分别叫什么名字?

(2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

(3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

(4)指导学生归纳后,在比例里,两个外项的积等于两个内项的'积。这就是比例的基本性质。

(5)指导学生完成第一46页“做一做”第1题。

三、巩固练习

四、课堂小结

这节课你学到了哪些知识?

创意作业:

有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

《比例的意义》教学教案 篇2

设计说明

本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:

1.重视有效学习情境的创造。

新课伊始,通过谈话激活学生对国旗的已有认识,引出本节课要用的中国国旗的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。

2.重视引导学生自主探究。

教学比例的意义时,先引导学生依据三面国旗的长与宽写出多个比,再引导学生发现它们的比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的意义。

3.重视引导学生合作交流。

《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的`基本性质”的探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。

课前准备

教师准备 PPT课件

教学过程

⊙渗透情感,导入新课

1.课件出示国旗画面,学生观察,激发爱国情操。

(天安门升国旗仪式、校园升旗仪式、教室场景)

师:这三幅不同的场景都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?

2.课件出示国旗的长和宽,并提出问题。

天安门升旗仪式上的国旗:长5 m,宽 m。

操场升旗仪式上的国旗:长2.4 m,宽1.6 m。

教室里的国旗:长60 cm,宽40 cm。

师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?

3.导入新课。

师:每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。

(板书课题:比例的意义和基本性质)

设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对国旗知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。

⊙合作交流,探究新知

1.教学比例的意义。

(1)自主尝试。

课件出示教材40页主题图,根据图中给出的数据分别写出不同场景中国旗的长和宽的比,并求出比值。

(2)汇报、交流。

预设

生1:天安门升旗仪式上的国旗。

长∶宽=5∶=

生2:操场升旗仪式上的国旗。

长∶宽=2.4∶1.6=

生3:教室里的国旗。

长∶宽=60∶40=

(3)感知比例的意义。

观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?

预设

生1:可以用等号连接,因为它们的比值相等。

“2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。

生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。

生3:根据比与分数的关系,“2.4∶1.6=60∶40”

也可以写成“=”。

《比例的意义》教学教案 篇3

【学习目标】

1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。

3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。

【学习重点】

理解反比例函数的意义,确定反比例函数的解析式。

【学习难点】

反比例函数的解析式的确定。

【学法指导】

自主、合作、探究

教学互动设计

【自主学习,基础过关】

一、自主学习:

(一)复习巩固

1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的

2.一次函数的解析式是:;当时,称为正比例函数.

3.一条直线经过点(2,3)、(4,7),求该直线的解析式.

以上这种求函数解析式的方法叫:

(二)自主探究

提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?

1.如图K-3-8,已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.

(1)当y1-y2=4时,求m的.值;

(2)过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若△PBD的面积是8,请写出点P的坐标(不需要写解答过程).

26.1.2反比例函数的图象和性质:课文练习

1.下面关于反比例函数y=-3x与y=3x的说法中,不正确的是()

A.其中一个函数的图象可由另一个函数的图象沿x轴或y轴翻折“复印”得到[

B.它们的图象都是轴对称图形

C.它们的图象都是中心对称图形

D.当x>0时,两个函数的函数值都随自变量的增大而增大

《比例的意义》教学教案 篇4

一、教学目标

知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点

重点: 理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计

(一)创设情境,提出问题

1. 复习导入:

(1)什么叫做比?

两个数相除又叫做两个数的比。

(2)什么叫做比值?

比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:

12:16= 4、5:2、7= 10:6=

谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:

一辆货车运输大麦芽情况

第一天 第二天

运输次数 2 4

运输量(吨) 16 32

根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

谈话:谁来交流?跟大家说一下你的问题是什么?

学生可能出现以下的问题:

货车第一天的运输量与运输次数的比是多少? (16 : 2)

货车第二天的运输量与运输次数的'比是多少?(32 :4)

货车第二天的运输量与第一天运输量的比是多少?(32 :16)

(师根据学生的回答,将答案一一贴或写于黑板)

2 :16; 4 :32; 16 :2; 32 :4;

16 :32; 2 :4; 32 :16; 4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

思考:这个比值所表示的实际意义是什么?(每次的运输量)

既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

2、比和比例有什么区别?

4︰6

比例

2︰3=4︰6

3.判断下面两个比能否组成比例?

6∶9 和 9∶12

总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

5、学生先独立思考,再小组交流,探究规律。

出示研究方案:

①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?

6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?

(2)还有其他发现吗?

(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:

应用比例的基本性质,判断下面两个比能不能组成比例.

6∶3 和 8∶5

方法:a、先假设这两个比能组成比例

b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升

1、判断下面每组中两个比能否组成比例?

1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

让学生根据比例的意义进行判断,教师结合回答板书:

1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:

2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和 6

因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结

在这节课中你又有什么新的收获?