设计方案
微文呈现整理的设计方案(精选4篇),汇集精品内容供参考,请您欣赏。
设计方案 篇1
一、活动主题:岁月如歌,感念师恩
二、活动目的:在一年一度的教师节即将来临之际,号召学生写下最美的文字献给最敬爱的老师,让每个学生由衷的写下对老师的感恩之情,并在本次活动中去感受教师默默耕耘、无私奉献的.精神,由衷地向老师表示敬意,感谢老师的辛勤工作,并通过实际行动表达对老师的敬意劳动。使整个高职院到处洋溢着温馨的气氛。
三、主办部门:院文学社
四、活动对象:某大学所有在校学生
五、活动时间:20xx年9月10日教师节
六、活动内容:
1、条幅签字:
张贴条幅、并签名赠写祝福
2、祝福传递:
让同学们把在祝福的话语、思念之意、感激之情写在不同颜色的卡纸上,并粘贴于祝福墙上。由文学社或参加活动的学生贴在祝福墙上。大学生教师节活动策划书大学生教师节活动策划书。
3、征集写关于老师的文章,评选出最美的文字,颁发证书。
4、宣传号召:
a、给老师发一封庆祝教师节的电子邮件或写一封表露感激之情的感谢信,并附上一份自己本学期的奋斗目标。
b、号召自己制作贺卡,让每位同学写上深情的问候和祝福的话语,献给每位教师。
c、见到老师时送上一声亲切的问候;
d、让老师看到祝教师节快乐的话;
e、以全班同学的名议,给老师献上一支鲜花
f、给教官买一包润喉糖,让教官保护好嗓子。
七、活动安排:
9月7日,文学社社长团拟定岁月如歌,感念师恩主题活动的工作部署。由文学社组织部负责活动所需要的物资;编辑部负责整理、书写及校对相关材料工作。
八、所需物品及安排:
祝福墙海报一张(文学社组织部安排)
签名条幅(提交院经费审批)
内容格式:岁月如歌,感念师恩
将最美的文字献给最敬爱的老师,老师,您辛苦了!
院文学社宣
电脑及其宣传视频(文学社组织部安排)
登记统计材料(文学社组织部安排)
桌椅安排(23个桌子,四个凳子)
彩色卡纸(文学社组织部安排)
九、活动总结
由某大学高职院文学社组织部对此活动进行书面总结,文学社新闻部写出相关报道并将总结报告提交文学社备案。
十、未尽事宜,另行安排
设计方案 篇2
此次SP活动是在新学期给广大校友的一次回馈,目的是让每一校友都能体会到我们太平洋眼镜店的爱心。
1、活动部分:我们会立足民大实际,结合广大校友需求,开展一系列校园优惠活动。
2、宣传部分:在已有宣传方式的基础上开拓更大面积的市场宣传,并维护好店面的整体形象。
3、具体操作部分:我们力求成立专门的活动小组来负责这次方案的施行。其中的细节部分我们定将加以注意,挣取最大程度上满足民大校友需求。
此次SP活动我们将以百分百的努力服务大家,相信我们一定会取得佳绩,具体内容在策划书中有相应的阐述。谢谢欣赏!
一、 前言
门店介绍
太平洋眼镜店今年初春进军民大市场,店面坐落于北区通往小镇小门外正街的西侧第三个铺面,可以说店面位置和内部装修在小镇来讲具有很强优势。店面开业之初生意还算可以,可是慢慢的就变得门可罗雀了。在重新做了自身产品和定价调整后,如何尽快打开民大市场成了亟需解决的问题。
选题背景
(1) 大学生市场是当今商家争夺的热点。
近年来许多产品面向的都是大学生市场,大学生的许多需求促进了商家进入
的步伐,作为一家眼镜店,面对大学生市场具有比其它类产品所不具有的优势。因此,能否做好一系列的活动事关店面在大学生市场的发展。
(2) 学生近视率近年来连年攀升。
近视人群是眼镜市场的主要客户,学生无疑是这一市场的主体。市场需求量大,如何才能让更多客户选择我们太平洋眼镜店是我们亟需解决的一个问题。
选题意义
通过对现实的思考以及对各种因素的细致考虑,我们充分发挥创造性思维。我们可以:
(1) 充分运用所学知识,并运用于实践。
(2) 运用营销组合,充分提高盈利减小风险。
(3) 挖掘团队队员的闪亮点,体现团队价值。
(4) 开拓民大市场,服务更多的校友。
二、 活动主体
1、 我们的目标
短期目标:做好此次校园推广。
(1) 建立优秀的团队;
(2) 拓展市场,达到此次预想目标;
(3) 争取获得一定的收益。
长期目标:形成稳定的民大市场。
(1) 完善校园推广方案;
(2) 盈利能力不断增强;
(3) 与学校的相关组织建立良好的合作关系。
2、 活动对象
(1) 现有客户:对曾经来我店配过眼镜或做过护理的客户,可以用本店的发票来领取大礼包。
(2) 潜在客户:实行优惠制度并发放会员卡,凭卡可以参与本店所举办的一系列宣传抽奖活动。
3、 活动主题
口号:“爱护你的眼睛,让它享受‘太平’”让更多的校友配上合格的且质量有保证的.眼镜,并是本店获取一定收益,从而达到双赢的效果。
4、 活动开展
(1) 校外活动(3月1号——3号)
举办店外展销活动,并印发宣传手册,系统的介绍本次活动所涉及的商品及相关优惠方式。
(2) 校内活动(3月4号——6号)
申请校内场地,初步拟定为北区大餐厅前,与学校的有关公益协会合作,开展“护眼宣传日”活动。三天活动安排为:印发护眼小手册、护眼公益签名、现场传授护眼小常识。
三、 活动宣传
1、 媒体宣传
利用民大论坛、广播、民大QQ群等宣传此次活动的有关事项,力求消息简洁明了且有吸引力。
2、 人员宣传
(1) 利用参与此次活动的团队进行不定向宣传;
(2) 联合校内公益协会进行定向宣传并公示此次活动的海报。
四、 执行方案
1、 准备工作
前期准备(2月20号——28号)
(1) 组建活动团队并做好人事安排;
(2) 筹备活动所需物品;
(3) 细化各项流程,查缺补漏;
(4) 进行民大调研并与校方达成合作。
中期操作(3月1号——6号)
具体落实校外和校内活动,争取受众面积最大化,并积极做好店面的形象宣传。
后期延续(3月6号之后)
根据实际需求开展不同方式和不同层次的宣传活动并定期对前期活动进行总结。
2、 财务分析
(1) 员工工资 4000元
(2) 物品费 3000元
(3) 场地费 1000元
(4) 备用资金 3000元
共计 11000元
五、 风险控制
1、 风险预防
(1) 小镇城管人员的查点;
(2) 资金不足的可能性;
(3) 人员流失的可能性;
(4) 天气影响;
(5) 活动能否达到预期效果;
(6) 活动管理中存在的缺陷。
2、 风险降低
(1) 认真做好前期各项准备工作;
(2) 对可能遇到的问题进行事先应急准备;
(3) 注意团队意识培养;
(4) 依实际情况灵活调整方案。
六、 效果预估
通过对民大市场进行的前期调研并结合本店一年多来的经营考查,从而制定出符合实际的新学期SP活动方案。对于方案的具体落实状况直接影响到本次活动所要达到的效果。本次活动的前期收效是以后本店进行其他活动的关键指导,鉴于此,只要成功落实方案,那么本店必将能够取得理想效果,我们对此充满信心!
设计方案 篇3
在进行广场雕塑设计时,首先需要考虑是雕塑的位置布局,其次是考虑如何运用多元化的表现手法来诠释这座城市,体现出其公共性、公益性、文化性、地域性、特色性、独有性。而且,由于去广场的人很多,且从事的职业都不尽相同,有大人有小孩,因此在进行广场雕塑设计时要做到雅俗共赏,具有极大的观赏价值。
并非每个广场都有明确的主题,但从总体而言有主题的比例更多,而广场的主题选择往往是以其文脉性、环境性、地域性等作为思考的依据。因此,在对广场雕塑设计时,还需要注意以下三大要素:
一、空间要素
广场雕塑是以立体的体量占有空间的,且相对尺寸较高,其本身的体量形态占据着空间,而空间反过来也影响着广场雕塑的形体。广场雕塑具有一定的地域特征,它代表了一定的城市文化、环境特点。所以在设计制作广场雕塑时要考虑与周围建筑物的关系、与周围颜色与光线的关系、与城市文化及城市地貌的关系等等。
二、材料要素
随着社会科技的发展,雕塑所使用的材料也日益增多,如水泥、不锈钢、玻璃钢、铝合金、石材、铜、铁艺等,不同的材料表现出不同的质感和触感,营造出不同的审美效果。新型材料使现代雕塑的表现形式和发展空间更加的开阔。广场雕塑在选择材料必须根据环境、题材等来决定,尽量使用耐久性的户外材料,不要因为忽略材料的特点而最终使广场雕塑与环境、题材等不协调。另外,在造型色彩等方面也要与环境呼应。
三、形式要素
广场雕塑按形态可分为浮雕和圆雕,按功能性分为主题性广场雕塑与装饰性广场雕塑。其中主题性广场雕塑的主题,既可以是历史上或现实生活中的某个人或某件事,亦可以是广场中某些代表性的环境或建筑,主体性广场雕塑必须能够与周围的环境因素有机地结合起来,并且还要能点明主题,甚至是升华主题,从而使观众明显地感到其独有的.环境特性。另外,广场雕塑按表现手法与风格上可分为具像雕塑与抽象雕塑。具象雕塑与抽象雕塑的本质区别在于:具象雕塑具有可识别性,而抽象雕塑则不具备这一特征。所以,在对广场雕塑设计时,需要考虑到底用何种表现形式来更好的与整个广场环境融合。
美景创意始于20xx年,专注环境艺术工程领域13年,中国雕塑家学会领衔的艺术顾问团队,拥有创新的设计力量、优良的雕刻制作实力以及负责的安装售后,为您量身定制雕塑工程解决方案(城市雕塑、园林雕塑、景观雕塑、校园雕塑、烈士园林雕塑、景区雕塑等)。多年来我们专注于雕塑艺术设计、雕刻制作,积累了丰富的经验和行业资源。已为湖南宁远烈士公园、彭德怀纪念馆、泸溪烈士公园等众多知名景区、公园、纪念园、医院、工业园区及企业打造雕塑艺术。
设计方案 篇4
课前与同学谈话省略
师:今天上课我们学什么?大声地说“学什么”
生齐:圆的认识
师:从哪里看到的?只给我看,
生指屏幕
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规
师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?
生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?
生齐:有
师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形
生:长方形
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形
生:正方形
师:还有一个图形
师从信封里摸出一个三角形
生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形
生:平行四边形
师从信封里摸出一个梯形
生:梯形
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑
师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?
生齐:曲线
师:给它一个名称。
生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会
师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……
生齐:丰满
师:嘿!瞧,还有一个
师出示一个椭圆,
师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……
生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……
生:不是
师:可以吗?
生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,
画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,
生2:我认为是圆的半径变了.
师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察
生4(到黑板前画出远的半径)
师:对不对?
生:对.
师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:O.
师:请在你刚才画的圆上,标出圆心,写出字母O.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便
师:请问,在圆上有多少个这样随便的点?
生:无数.
师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?
生:得出来了.
师:而且他们得出的结论和同学们得出的`几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?
生9:因为我们知道所有的半径都相等.
师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?
生:有.直径是半径的二倍.
师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?
生:半径和直径都相等.
师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.
现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?
生15:少了宽度.
师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?
生:不是.
师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/
生;不是.要扯开3厘米.
师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,
师:想一想,刚才我们旋转的是什么呀?
生:中心.
师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?
生:圆.
师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏
课前与同学谈话省略
师:今天上课我们学什么?大声地说“学什么”
生齐:圆的认识
师:从哪里看到的?只给我看,
生指屏幕
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规
师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?
生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?
生齐:有
师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形
生:长方形
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形
生:正方形
师:还有一个图形
师从信封里摸出一个三角形
生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形
生:平行四边形
师从信封里摸出一个梯形
生:梯形
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑
师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?
生齐:曲线
师:给它一个名称。
生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会
师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……
生齐:丰满
师:嘿!瞧,还有一个
师出示一个椭圆,
师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……
生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……
生:不是
师:可以吗?
生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,
画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,
生2:我认为是圆的半径变了.
师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察
生4(到黑板前画出远的半径)
师:对不对?
生:对.
师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:O.
师:请在你刚才画的圆上,标出圆心,写出字母O.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便
师:请问,在圆上有多少个这样随便的点?
生:无数.
师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?
生9:因为我们知道所有的半径都相等.
师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?
生:有.直径是半径的二倍.
师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?
生:半径和直径都相等.
师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.
现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,
正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?
生15:少了宽度.
师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?
生:不是.
师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/
生;不是.要扯开3厘米.
师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,
师:想一想,刚才我们旋转的是什么呀?
生:中心.
师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?
生:圆.
师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏
返回首页