返回首页
微文呈现 > 短文 > 教学教案 > 正文

抽屉原理教学设计

2026/01/26教学教案

微文呈现整理的抽屉原理教学设计(精选4篇),汇集精品内容供参考,请您欣赏。

抽屉原理教学设计 篇1

教学内容:

教材简析:

《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。

学情分析:

六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

教学目标:

1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2、使学生经历抽屉原理的`探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。

教学重点:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程:

一、课前游戏,导入新课。

游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。

我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理——抽屉原理。

[设计意图:把抽象的数学知识与生活中的游戏有机结合起来,使教学从学生熟悉和喜爱的游戏引入,让学生在已有生活经验的基础上初步感知抽象的“抽屉原理”,提高学生的学习兴趣。]

二、通过操作,探究新知

(一)活动一

1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?

(板书:小棒4杯子3)

提出要求:把所有的摆法都摆出来,看看你会有什么发现?

(1)同桌之间互相合作,动手摆,把各种情况记录下来。

(2)指名一位同学展示不同摆法,教师板书。(4,0,0)(3,1,0)(2,2,0)(2,1,1),(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)

(4)师生共同理解“总有”“至少”有2枝什么意思?

(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。

[设计意图:学生通过自己动手操作,在实验中、合作中、讨论中发现规律,分析问题的形成,把动脑思考与动手操作相结合,独立思考与小组合作相结合。让同学之间互相帮助,相互提高,让问题在学生的探究中得到解决。]

2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?

(1)启发学生猜想结果

把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?

(2)引导学生选择合适的方法

提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?

(3)学生尝试操作验证。

(4)全班交流,操作演示。

学生活动后组织交流:先每个杯子摆一根,每个杯子放1跟,5个杯子,就已经放了5根,还有1根不管怎么放,总有一个杯子至少有两根小棒

预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。

(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。

3、课件出示:

把100根小棒放进99个杯子呢?

谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?

引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。

这也是数学中一种很重要的方法“假设法”。

引导学生观察小棒数和杯子数,你有什么发现?

明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。

[设计意图:注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。在猜测的基础上进行实验和推理,从“枚举法”到“假设法”,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。]

(二)活动二

谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?

课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

板书:书抽屉总有一个抽屉放入算式

5235÷2=2……1

抽屉原理教学设计 篇2

教学目标

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重、难点

经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程

一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

二、探究新知

(一)教学例1

1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有”是什么意思?(一定有)

(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)

教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?

学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。

2.完成课下“做一做”,学习解决问题。

问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

(1)学生活动—独立思考自主探究

(2)交流、说理活动。

引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的.一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。

总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。

(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报,教师给予表扬后并总结:

总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。

问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)

引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)

总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。

三、解决问题

四、全课小结

抽屉原理教学设计 篇3

教学内容:

六年级数学下册70页、71页例1、例2.

教学目标:

1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:

经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:

理解“抽屉原理”的一般规律。

教学准备

相应数量的杯子、铅笔、课件。

教学过程

一、情景引入

让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知

1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?

摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1

(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?

(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。

(4,0,0) (3,1,0) (2,2,0) (2,1,1)

(学生通过操作观察、比较不难发现有与上个问题同样结论。)

(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

师:“总有”是什么意思? “至少”呢?让学生理解它们的含义。

师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。

教师出示课件演示让学生进一步理解“平均放”。

3、探究n+1根铅笔放进n个杯子问题

师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?

让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。

师:7根铅笔放进6个杯子,你们又有什么发现?

……

学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。

学生汇报后引导学生用实验验证想法。

师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)

师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)

4、总结规律

师:刚才我们研究的'都是铅笔数比杯子数多1,而余数也正巧是1的,如果余下铅笔数比杯子多2、多3、多4的呢,结论又会怎样?

(1)探究把5根铅笔放在3个杯子里,不管怎么放,总有一个杯子里至少有几根铅笔?为什么?

a、先同桌摆一摆,再说一说。

b、你怎么分的?

学生汇报后,教师演示:将5根笔平均分到3个杯子里里,余下的两根怎么办?是把余下的两根无论放到哪个杯子里都行吗?怎样保证至少?

引导学生知道再把两根铅笔平均分,分别放入两个杯子里。

(2)探究把15根铅笔放在4个杯子里的结论。

(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。

(4)教学例2

课件出示:

1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

学生汇报

小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。

师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的结果。

三、解决问题

1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?

2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?

师:最后,我们再来玩个游戏,你们都玩过扑克牌吗?一共有几张牌(54),抽出大王和小王还剩几张(52)有几种花色(四种),下面老师请一位同学任愿的抽出5张,不用看,老师就知道,不管怎么抽,至少有2张是同花色的。老师说的对吗?为什么?

四、课时总结

抽屉原理课件文字版2

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册数学广角《抽屉原理》。

教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教具学具:课件、扑克牌、每组都有相应数量的杯子、吸管。

教学过程:

一、创设情景,导入新课

分配房间1、3个人住两个房间 2、4个人住3个房间

板书课题:抽屉原理

展示学习目标1经历抽屉原理的探究过程,初步了解抽屉原理;

2运用抽屉原理解决简单的实际问题。

二、探究新知,揭示原理

1.出示题目:把4根吸管放进3个纸杯里。

师:先进入活动(一):把4枝吸管放进3个杯子里,有多少种放法呢?会出现什么情况呢?大家摆摆看。在不同的摆法中,把每个杯子里面吸管的枝数记录下来,当某个杯子中没放吸管时可以用0表示。

2.学生动手操作,自主探究。师巡视,了解情况。

3.汇报交流 指名演示。

4.思考:再认真观察记录,有什么发现?

课件出示:总有一个杯子里至少有2根吸管。

5.理解“总有”、“至少”的含义

总有一个杯子:一定有一个杯子,但并不一定是只有一个杯子。

至少2根吸管:最少2枝,也可能比2枝多

6.讨论、交流:刚刚我们是把每一种放法都列举出来,知道了总有一个杯子里至少有2枝吸管。那为什么会出现这种情况呢?可不可以每个杯子里只放1枝吸管呢?和小组里的同学说说你的想法。

7.汇报:

吸管多,杯子少。

课件演示:如果每个杯子只放1枝吸管,最多放3枝。剩下的1枝吸管不管放进哪个杯子里,一定会出现“总有一个杯子里至少有2枝吸管”的现象。

8.优化方法

如果把5枝吸管放进4个杯子,结果是否一样呢?怎样解释这一现象?

师:把4枝吸管放进3个杯子里,把5枝吸管放进4个杯子里,都会出现“总有一个杯子里至少有2枝吸管”的现象。那么

把6枝吸管放进5个杯子里,把7枝吸管放进6个杯子里,把100枝吸管放进99个杯子里,结果会怎样呢?

9.发现规律

师:从上面的几个问题中,你发现了什么相同的地方?

条件都是吸管数比杯子数多1;结果都一样:总有一个杯子里至少有2枝吸管。

课件出示:只要放的吸管数比杯子的数量多1,不论怎么放,总有一个杯子里至少放进2枝吸管。

10.想一想:如果要放的吸管数比杯子的数量多2,多3,多4或更多呢?这个结论还成立吗?(只要求学生能说出自己的看法,并不要求一定是正确的)

师:是不是像同学们想的那样呢?我们接着进入下面的学习。

11出示自学提示:结合刚才所学,大胆猜一猜,也可动手摆一摆,并结合书上例2进行小组合作学习, 完成表格,试着探索求“至少数”的方法。

学生小组学习,填写表格,讨论规律。

指生汇报得出结论:至少数=商+1

三、归纳总结抽屉原理

把m个物体放进n个抽屉里,用算术表示m/n=a......b,总有一个杯子里至少放a+i个物体,也就至“少数=商+1”

四、拓展应用:

课件一:填空

1、34个小朋友要进4间屋子,至少有( )个小朋友要进同一间屋子。

2、13个同学坐5张椅子,至少有( )个同学坐在同一张椅子上

3、新兵训练,战士小王5枪命中了41环,战士小王总有一枪不低于( )环。

4、从街上人群中任意找来20个人,可以确定,至少有( )个人属相相同

课件二:

从扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。

(1)从中抽出18张牌,至少有几张是同花色?

(2)从中抽出20张牌,至少有几张数字相同?

课件三:

六(2)班有学生39人,我们可以肯定,在这39人中,至少有 人的生日在同一个月?想一想,为什么?

课件四:

六年级四个班的学生去春游,自由活动时,有6个同学在一起,可以肯定, 。为什么?

五、课堂总结

同学们,通过本节课的学习,你有哪些收获?

六、生成创新

课后搜集生活中有关抽屉原理的应用,试着自己编写一些利用抽屉原理解决的问题。

抽屉原理教学设计 篇4

一、教学内容:

教材第70页、72页例一、例二及做一做。

二、教学目标:

知识与技能

1.理解最简单的“抽屉原理”及“抽屉原理”的一般形式。

2.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

过程与方法

通过操作发展学生的类推能力,形成比较抽象的数学思维。情感态度与价值观

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。

三、教学重点:

理解抽屉原理的推导过程。教学难点;理解抽屉原理的一般规律。

四、教学方法:

教法:创设情境 引导探究 学法:小组合作

讨论

五、师生课前准备:

4支铅笔

3个文具盒 投影仪

五、教学过程

(一)课前游戏引入

1.坐凳子游戏:

教师和5名学生做游戏

2.用一副牌展示“抽屉原理”。

师:这有一副牌,老师用它变一个魔术。想看吗?这个魔术的名字叫“猜花色”。老师随意抽五张牌。我能猜到,至少有两位同学的手中的花色是相同的,你们信吗?(老师与学生合作完成魔术)师:通过者个游戏你们能猜到我们今天研究的内容吗?

3.揭示课题,板书课题《抽屉原理》

抽屉原理很神奇,我们用它可以解决很多有趣的的问题,想弄明白这个原理吗?这节课我们就一起来探究这种神秘的原理。

(二)探究原理

建立模型

1.合作探究(问题一)

师:同学们手中都有文具盒和铅笔,现在分小组动手操作:学生取出4枝笔,3个文具盒。然后把4枝笔放入3个文具盒中,摆一摆,想一想共有有几种放法?还有什么发现?

学生取出学具,带着问题展开小组活动。2.汇报展示

学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

放法:(0,1,3)(2,2,0)(2,1,1)(4,0,0)教师:通过刚才的操作,你发现了什么?

学生:我们发现不管怎么放,总是有一个文具盒里至少放进去了2枝笔。理由是

2教师引导学生用平均分的方法解决问题

小组带着问题再次展开探究。

生:每个文具盒先放1枝,余下的一枝不管放到哪个文具盒里都可以得出,总有一个文具盒至少放进2枝笔。

3.学以致用

课件出示:

将5枝笔放入4个文具盒 将50枝笔放入49个文具盒 将1000枝笔放入999个文具盒

教师:同学们仔细观察文具盒数和所对应的.铅笔数你发现了什么? 组织学生相互仪一仪,得出结论。

小小收获:只要放进的铅笔数比文具盒数多1,总有一个文具盒里至少放进2枝铅笔。

师:看来同学们都用用平均分的方法就可以解决这个问题呢? 师:如果要放的铅笔数比文具盒数多2,多3,多4呢?

4.尝试练习

有7只鸽子,要飞进5个鸽舍里,总有一个鸽舍里至少飞进2个鸽子,为什么?

三、合作探究(问题二)

课件出示:如果将5本书放入2个抽屉,那么不管怎么放,肯定有一

个文具盒至少放进了()枝笔?

组织学生分组讨论,相互交流。师:能否用算式解答呢? 生列式计算5÷2=21 2+1=3 生:至少放3枝,商+1。

1、如果一共有7本书会怎样呢?

2、如果一共有9本书会怎样呢? 学生独立完成,然后汇报

3、二次尝试练习:

如果把5本书放进3个抽屉,不管怎么放总有一个抽屉至少有几本书?

四、课堂总结

通过学习你有什么收获?

五、课堂检测

1. 14本书放入5个抽屉,总有一个抽屉至少有几本书?(10分)2. 26本书放入7个抽屉,总有一个抽屉至少有几本书?(10分)3. 六(2)班有学生39人,我们可以肯定,在这39人中,至少有

几人的生日在同一个月?想一想,为什么?(10分)

六、板书设计

(0,1,3)(2,2,0)(2,1,1)(4,0,0)只要放进的铅笔数比文具盒数多1,总有一个文具盒里至少放进2枝铅笔。

5÷2=2……1 2+1=3 7÷2=3……1 3+1=4