返回首页
微文呈现 > 短文 > 教学教案 > 正文

植树问题教案

2026/02/08教学教案

微文呈现整理的植树问题教案(精选4篇),汇集精品内容供参考,请您欣赏。

植树问题教案 篇1

教学内容:义务教育课程标准实验科书(人教版)四年级下册第117--118页例题及相关练习。

教学目标

知识性目标:

1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

2、通过小组合作、交流,使学生发现并理解段数与棵树之间的规律,并利用规律解决一些实际问题。

能力目标:

1、让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的能力。

2、渗透数形结合的思想,培养学生借助实物,图形解决问题的意识。

情感目标:培养学生的分析意识,养成良好的交流习惯,感觉日常生活中处处有数学,体验学习的成功喜悦。

教学重点1、引导学生发现植树与间隔数的关系。

2、理解间隔与发现植树棵数的规律并运用规律解决问题。

教学准备

课件、学生用尺子、纸等。

教学过程

一、导入新课

1、讲故事:(略)这个故事告诉我们:我们在说话、做事情时不能信口开河,不加思索来完成。

2、揭示课题:

明天就是“六一”儿童节,我们的节日有很多,同学们你们知道吗?3月12日是什么节?(植树节)其实,“植树”这件事还很有数学上的学问,今天我们就来研究“植树问题”(板书课题)

二、新授。

1、出示准备题:

同学们在全长100米的小路去植树,每隔5米分为一段,一共可以分成多少段?

100÷5=20(段)

2、出示例题

同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

(1)读题分析理解:“一边植树,两端要栽”的意义。

可能许多同学列成:100÷5=20(棵)

(2)学生试做。

让学生讨论。

3、感知间隔的'含义

请你们伸出右手,张开,数一数,5个手指间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间的有几个间隔?4个间隔是在几个手指之间?

4、学生依次画图,课件依次演示画图过程的算法。

段数棵数

12

23

34

56

通过上面的分析,你发现了什么?

棵数=段数+1

或:段数=棵数-1

5、完成例题。A:先要求出段数:100÷5=20(段)

B:再次求出棵数:20+1=21(棵)

6、再次感知,找到规律

课件上做习题栽了8棵树,有( )个间隔。(两端都要栽)

有20个间隔,栽了( )棵树(两端都要栽)

三、尝试练习,做一做

课件:

1、园林工人沿路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

2、做书上的练习P122(练习二十)。T1、T2写在书上。

四、巩固加深,拓展。

1、打开书P117读书,思考。

2、你在这一节课有什么遗憾?

3、你在这节课中有什么收获?

4、联系生活举例,加深理解。

五、总结延伸

植树问题还有许多学问,今天我们只是解决了两端都栽,如果两端都不栽,封闭图形(如圆形花坛)栽树又怎样计算等待下一节课再去研究。

板书设计:

段数棵数学生练习板演

12

23

34

45

规律:棵数=段数+1

或:段数=棵数-1

植树问题教案 篇2

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)、培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)、感受数学在生活中的广泛应用。

(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

(3)、认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)、认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)、揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、探究新知。

(一)、创设情境,提出问题。

1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)、从题目中你得到了哪些数学信息?

(2)、理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的`情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)、同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)、提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到1000米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)、自主探究。

(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)、生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)、学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)、应用规律,解决问题。

(1)、出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)、生找出正确解法。

(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!)

(4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

师:请大家默读题目,然后在练习本上独立完成。

三、学以致用。

1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

生独立审题,尝试在练习本上独立完成。

生交流方法和思路。

2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

3、师:你们真了不起。请到知识城堡一展身手吧。

(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

生汇报交流。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

植树问题教案 篇3

教学内容:

人教版五年级上册第七单元第一课植树问题

教学目标:

知识与技能:

(1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

(2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

(3)从封闭曲线(方阵)中发现植树问题的规律。

过程与方法:培养学生观察能力、操作能力以及与人合作的能力。

情感态度与价值观:学生通过观察、操作、交流等活动探索新知。

教学重难点:

教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

教学难点:基本规律的提炼和方法的应用。

教学准备:

教具准备:课件

学具准备:练习本

教学过程:

一、课前谈话。

同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的`奥秘。

二、探究规律。

(一)1.出示题目

这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

①理解题意

a、指名读题,从题中你了解到了哪些信息?

b、理解“两端”是什么意思?

指名说一说,然后实物演示。

指一指哪里是小棒的两端?

说明:两端要栽就是小路的两头要种。

②学生动手操作。

拿出小棒,同桌间互相说一说,画一画,摆一摆。

③同桌互相讨论后,全班汇报交流

a、指名说一说:你一共摆了多少根小棒?

上黑板上来摆给大家看一看。

b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

c、间隔与种树的棵数有什么关系?

④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

2.改变题目条件变为:

在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

1.学生试解答

2.用小棒检验

3.说一说你的想法

间隔数与栽树的棵数又有什么关系呢?

学生试说后,教师小结。

4.基本练习:同学们做操,某竖行从第一人到最后一人的距离是24米,每两人之间相距2米,这一行有多少人?

5.提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

(二)出示例2

1、学生读题,理解题意

①“两馆间的小路”指的是哪一段?

②“小路两旁”指的是要栽几边?

2、学生互相合作,用小棒摆一摆

师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

要求完成:

①你一共摆了几根小棒?

②每一边的小棒根数和间隔数之间有什么关系?

3、全班交流

4、教师小结

这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

(三)用摆小棒的方法教学例3

教师小结:两端封闭的情况下植树棵数=间隔个数

三、练习应用

1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

2.在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

四、课堂总结

植树问题教案 篇4

教学目标:

1、建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。

2、通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的.数学模型。教学难点:培养学生探索解决问题的有效方法的能力。

教学准备:

课件。

教学过程:

一、创设情境,导入新课:

师:同学们,你们参加过招聘会吗?

生:没有。

师:想不想拥有这样一次经历?

生:想。

师:瞧,老师带来了一份招聘启示。(课件演示)

招聘启示:

新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。

师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)

为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。

说一说,你们打算怎样植树?

师:哪位同学愿意来说说你的想法?

学生汇报讨论结果

生1:两端都栽。

生2:头栽尾不栽。

生3:尾栽头不栽。

生4:两端都不栽。

师:从这份要求上,你能获得哪些信息?

生:路全长有60米,只在路的一边栽,每隔5米栽一棵。

师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。

二、民主导学:

任务呈现:

大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3m。一共要栽多少棵树?

1、你都知道了什么?

2、你认为一共要栽多少棵树?

师:这道题和上节课学的植树问题有什么不一样呢?

提示:小路的两端都是场馆,还需不需要栽树呢?还有需要注意的吗?到底要栽几棵,我们还是用前面学习的方法,举简单的例子(9米、12米、15米、21米)画一画,栽一栽?

自主学习:

小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:

师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?

生:棵数=间隔数—1

间距x间隔数=总长

讨论:在两头都不种的情况下,棵数为什么会比间隔数少1呢?师:那大象馆和猴山间栽多少棵数?

60÷3=20(个)

20—1=19(棵)

19x2=38(棵)

教师追问:为什么要“x2”?(因为小路两旁都要栽树)

师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。

三、检测导结:

师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。

1、目标检测:

一、填一填

1、一排同学之间有7个间隔,第一排有( )个同学。

2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走( )个台阶。

二、算一算

1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?

2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵有多少米?

3、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

2、结果反馈:

3、反思总结:

师:通过今天的学习,大家有哪些收获?

学生畅谈收获。

师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!