返回首页
微文呈现 > 短文 > 教学教案 > 正文

梯形面积计算教学设计

2025/12/24教学教案

微文呈现整理的梯形面积计算教学设计(精选4篇),汇集精品内容供参考,请您欣赏。

梯形面积计算教学设计 篇1

教学目标

1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。

3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。

重点难点

重点:掌握梯形面积的计算公式。

难点:理解梯形面积公式的推导过程。

教具学具

多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)

教学过程

一、导入

1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?

生:平行四边形的面积=底×高,也就是S=ah。

三角形的面积=底×高÷2,也就是S=ah÷2。

2、指名让学生说出平行四边形、三角形的面积公式的推导过程。

3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。

二、探究

1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?

生:各种梯形,每种两个。

提出要求:(1)选择自己喜欢的`梯形把它拼成我们学过的图形。

(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?

(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

2、学生先独立思考,后小组交流。

教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。

3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?

各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)

三、汇报

四、总结

师:学完这节课,你收获了什么呢?跟大家说说吧!

学生讨论。

老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。

梯形面积计算教学设计 篇2

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点、难点:理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

教具准备:课件。

教学过程:

(一)复习旧知,做好铺垫。

1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

2、练习(出示)

口答下面各图形的面积。(单位:厘米)

(二)创设情景,提出问题

师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

(三)小组学习,解决问题。

师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

合作要求:

(1)想一想:我们已经学过哪几种图形的面积公式?

(2)试一试:把梯形转化成已经学过的图形。(任选一种)

(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的.面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

让学生独立计算,在集体订正。

师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

(四)应用拓展,巩固知识。

师:下面我们来做练习吧。

1、一☆练习

a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

b.课件出示:P75做一做,由学生独立完成,集体订正。

c.课件出示:判断

1)两个梯形能拼成一个平行四边形。()

2)平行四边形的面积是梯形面积的2倍。()

让学生独立判断,并说明理由。

2、二☆练习

a.课件出示:

一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

b.课件出示:

我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

(顶层根数+底层根数)×层数÷2

想一想是什么道理,并算出图中圆木的总根数。

3、三☆练习

课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

学生独立解答,再交流。

(五)小结全课,结束教学

让学生讲讲这节课的收获,并布置作业。

有时间的话做“思考”

在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

梯形面积计算教学设计 篇3

教学内容:

九年义务教育六年小学制数学第九册第74—75页。

教学目标:

1、在理解的基础上掌握梯形面积的计算方法,能正确地计算梯形的面积。

2、通过操作、观察、比较,发展学生的空间观念,培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

3、渗透旋转和平移的思想,充分发挥学生的主观能动性,启发学生探索合作,让学生在实验中感受数学知识的内在美,体验创新的乐趣。

教学重点:

理解并掌握梯形面积公式的推导,会计算梯形的面积。

教学难点:

理解梯形面积公式的推导过程。

教具准备:

两个完全一样的梯形若干个。

学具准备:

各小组准备两个完全一样的梯形一对。

教学过程

一、复习导入:

1.cai出示已学过的平面图形,说出它们的面积公式并计算出它们的面积。

(学生回答,cai依次出现相应图形面积的计算公式)

提问:三角形的面积公式为什么是用底×高÷2?

2.教师设疑:cai出示一个梯形,想一想你能仿照求三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?

二、教学新课:

(一)、引入课题:那我们也用两个完全一样的'梯形来做实验,共同研究“梯形面积的计算” 。(板书课题:梯形面积的计算)

(二)、实验探究:

1.猜一猜:① 两个完全一样的梯形可能拼成什么图形?

② 梯形的面积会跟梯形的什么有关呢?

2.小组合作实验,推导梯形面积的计算公式:

(1)教师谈话:利用手里的学具(标出上底、下底和高),仿照求三角形面积的方法试着推导出梯形面积的计算公式。

(2)思考:

①两个完全一样的梯形可以拼成已学过的什么图形?怎么拼?

② 拼成的这个图形的面积跟梯形的面积有什么关系?

③ 你觉得梯形的面积可以怎样计算?

(3)小组合作,学生实验。

3. 实验汇报。

4. 引导学生看图并提问:这个梯形的面积可以怎样计算?

现在给你一个任意梯形,你都能求出它的面积吗?怎么求?为什么?

5.概括总结、归纳公式。

教师提问:

①为什么计算梯形的面积要用(上底+下底)×高÷2?

②要求梯形的面积必须知道哪些条件?

三、练习:

(一).基本练习:

(二)解决问题:

四、小结:

通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

五、巩固提高。

板书设计:

梯形面积的计算

梯形的面积=(上底+下底)×高÷2 )

s = (a+b)×h÷2

教学反思:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作 培养探索能力

在推导梯形面积计算公式时,安排了两次操作活动。首先让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:梯形与你拼成的平行四边形有什么联系?引导学生发现每个梯形的面积是拼成平行四边形面积的一半,然后再让学生用一个梯形,想办法把它转化成已学过的图形来推导梯形的面积公式。通过两次实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

二、发散验证 培养解决问题的能力

在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出梯形面积的计算方法。通过“拼、移”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。

梯形面积计算教学设计 篇4

教学目的:

1、掌握梯形的面积计算公式,能正确地计算梯形的面积。

2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点:

正确地进行梯形面积的计算。

教学难点:

梯形面积公式的推导。

教学准备:

投影、小黑板、若干个梯形图片(其中有两个完全一样的。

教学过程:

一、导入新课

1、提问:我们学习过哪几种平面图形的面积计算?计算公式分别是什么?

2、你能说出平行四边形的面积公式是如何推导的吗?三角形的面积公式呢?

3、创设情境:

投影显示:

启发谈话:同学们能依照平行四边形和三角形面积的方法,把梯形也转化成已学过的图形,计算出它的面积吗?(板书课题)

二、新课展开

1、操作探索

⑴拼一拼,让学生拿出自己准备的两个完全一样的梯形动手拼一拼。

提问:你拼成了什么图形,怎样拼的?演示一遍。

⑵看一看,观察拼成的平行四边形。

提问:你发现拼成的平行四边形和梯形之间的关系了吗?

出示小黑板:

拼成的平行四边形的底等于(),平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的`()。

⑶想一想:梯形的面积怎样计算?

学生讨论,指名回答,师板书。

梯形的面积=(上底+下底)×高÷2

师:(上底+下底)表示什么?为什么要除以2?

⑷做一做:计算“前面出示的梯形”的面积。

2、扩散思维

师:如果我们手中只有一个梯形,你们能不能自己动脑想出别的计算方法推导它的公式?下面小组讨论。分组汇报:

生1:做对角线,把梯形分割成两个三角形,如下图⑴:

生2:从上底的一个顶点做另一腰的平行线,把梯形分割成一个平行四边形和一个三角形。如上图⑵。

生3:从上底的两个顶点作下底的垂线,把梯形分割成一个长方形和两个三角形,如上图⑶。

师:同学们真聪明,想出了好多种方法,推导出了梯形的面积计算公式,但不管采取何种方法都可以得出梯形的面积是“上底与下底的和乘以高再除以2。”

3、抽象概括

师:如果用s表示梯形的面积,用a、b和h分别表示梯形的上、下底和高,那么梯形的面积你会表示吗?

生:s=(a+b)h÷2

4、反馈练习

完成课本p81做一做(一人板演)

三、应用深化

出示例子:一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米,它的横截面的面积是多少平方米?

解释:举例说明“横截面”的含义。学生尝试计算:

(2.8+1.4)×1.2÷2

=4.2×1.2÷2

=5.04÷2

=2.52(平方米)

答:它的横截面的面积是2.52平方米。

2、反馈练习:完成p82第1题

四、巩固练习:p82第2题

五、全课小结

六、作业:p82第3、4题

教学后记:

实践操作是儿童智力活动的源泉,在教学中我以实践操作为切入点,使抽象的概念具体化,积极推动学生的思维发展。让学生拼一拼、看一看、想一想、做一做,获得感性材料,为概括出新概念、总结新方法打下基础。

在教学是我注重了对学生的创新精神和实践能力的培养,真正体现学生是学习的主人。