圆的认识教学设计
微文呈现整理的圆的认识教学设计(精选5篇),汇集精品内容供参考,请您欣赏。
圆的认识教学设计 篇1
圆的认识教学设计13篇
作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。写教学设计需要注意哪些格式呢?下面是小编整理的圆的认识教学设计,希望对大家有所帮助。
圆的认识教学设计 篇2
教学内容:
三上分数的初步认识
教学目标:
1、使学生结合具体情境初步认识几分之一,能用实际操作的结果表示几分之一,并学会运用直观的方法比较这类分数的大小。
2、使学生认识分数各部分的名称,能正确读、写几分之一这样的简单分数。
3、结合观察、操作、比较等数学活动,引导学生学会和同伴交流数学思考的结果,获得积极的情感体验。
4、使学生体会数学来自生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学过程:
课前谈话:猜老师年龄,说自己的年龄。生活中还有哪里用到数?
1、丁丁和当当在数学活动中也遇到了一些数的问题。
书上图:四个苹果2瓶水
生1:把4个苹果平均分成2份,每份是2个
生2:把2瓶苹果平均分成2份,每份是1个
数学上把物体分得一样多,叫做?(板书:平均分)
把一个蛋糕平均分成2份,每人分得多少?怎样分?
生:切成两半
把一个蛋糕平均分成2份,每一份是这个蛋糕的一半,这一半该用什么样的数来表示?生:二分之一
像二分之一这样的数就是分数。我们这节课一起来认识分数。(板书)
把一个蛋糕平均分成二份,(同步演示分数的书写,分数线、分母、分子)这一份就是这个蛋糕的
1/2,另一份呢?(也是这个蛋糕的1/2)
它指的是谁?
你能说说我们是怎样得到这个蛋糕的1/2的吗?
2、拿一张长方形,先折一折,把它的1/2涂上颜色。
学生涂色作品。
折法不同,为什么涂色的部分都是长方形的1/2呢?
生1:都是一半
生2:都是把长方形平均分成2份,涂色的是其中的一份。
小结:折法不同没关系,只要折的是这个长方形的一半,每一份都是它的1/2。
3、判断:下面哪些图形里的涂色部分是1/2,在()里画“勾”。
小结:无论是一个蛋糕,一个图形,只要把它平均分成二份,每一份就是它的1/2。
4、(1)你还想认识几分之一?
生:1/4、1/8、1/3、1/6……(师板书)
(2)拿一张纸折一折,并用斜线表示出它的几分之一。
汇报:你把这个图形平均分成几份,涂色部分是它的几分之一?
生1:我把它分成8份,涂色部分是它的1/8。
生2:把一个圆形平均分成4份,涂了其中一份,每份是它的1/4。
小组内交流。展示作品:
长方形、正方形、圆形表示的1/4
(3)形状不同,为什么涂色部分都是它的1/4?
生:因为它们都平均分成四份,涂色的是其中的一份。
(4)不同的图形,能表示出相同的分数吗?
(5)相同的图形,能表示出不同的`分数吗?(请圆形操作的学生举起)
5、比较分数大小
(1)展示作品:圆形表示的1/2、1/4
比较它们各自涂色的部分,你能说出哪个分数大?
生1:1/4
生2:1/2
1/2表示哪一部分?(一大块)1/4呢?(一小块)中间用什么符号?(小于号)
(2)用完全相同的圆,表示出它的1/8,和1/2、1/4比,想象一下怎么样?(小)
用学生作品验证。
(3)同样大小的长方形、正方形能表示出不同的分数吗?老师给每组中发的图形大小相同,谁表示的分数大?谁表示的分数小呢?组内比较。
6、分数的书写。
(1)师教写1/2。
(2)你能用分数表示下面每个图里的涂色部分吗?(书上练习)
汇报:1/3 1/6 1/91/8
(3)分数各部分的名称怎样的?请生阅读书P98
中间短横,是?(分数线板书)表示平均分
2是?(分母)分母是2表示平均分成?(2份)
1是?(分子)分子是1表示其中的一份。
(4)先看图估一估,再填上合适的分数。(书上题目)
长方形1
1/3先估,课件移动1/3,验证长方形被平均分成3份。
1/6先估,课件移动1/6,验证长方形被平均分成了6份。
你怎么一下子就估对的?有什么窍门?
生1:1/3是下面的2倍。
借助观察比较估计,这是多好的学习方法。
今天所学的'分数和以前学习的1之间有联系吗?
再往下分,可能出现几分之一?
生说。
平均分成的份数越来越多的时候,每一份的大小会越来越(小)
7、下面的画面让你联想到了几分之一?
图:法国国旗(1/3)五角星(1/5)巧克力(1/8)
每一部分都是这个图每人吃一份,可以给几个人吃?形的1/3还能联想到几分之一?
生:1/2师:每人吃一份,可以给几个人吃?生:1/4师:每人吃一份,可以给几个人吃?师:同样一块巧克力,观察的角度不同,得到的分数也就不同。
8、黑板报。《科学天地》、《艺术园地》大约占黑板报版面的几分之一。艺术园地
科学天地
生:《艺术园地》占黑板报版面的1/4
师:版面不是分成了三份吗?
生:把《科学天地》再分,黑板版面就平均分成了四份。
9、瞧,人体中也能找到有趣的分数。
图:一岁现在的我
课件演示把一岁儿童的身长(图)平均分成四份,其中头占身高的1/4
把现在的我的身长(图)平均分成七份,其中头占身高的1/7
估计:八、九岁孩子的头占身高的几分之一?
学生估计
师提供资料:十岁儿童头占身高的六分之一
10、播放:多美滋1+1奶粉广告
东东把一块蛋糕平均分成四份,一看来了八人,刚解决这个问题,又来了第九个人。看广告让你能联想到几分之一?
生:能想到1/4
从哪个画面中联想到1/4?
生:第一幅画面,蛋糕平均分成四份,每人吃到一份
生:能想到1/8
从哪个面画中联想到的1/8?
生:第三、四画面把一个蛋糕平均分成8份,每人吃到一份
生:能想到1/2
这里的1/2是整个蛋糕的1/2吗?
生:不是,是小男孩手上蛋糕的1/2
生:1/9
如果开始就有9个人,平均分成9份,每人就得到这块蛋糕的1/9?
11、这节课你有什么收获?
圆的认识教学设计 篇3
教学内容
义务教育课程标准实验教科书青岛版小学数学六年级上册52———54页,《圆的初步认识》教学设计。课时:3课时(预习指导课、展示课、反馈课)
教学目标知识目标:
1、结合具体情境,学习圆的认识
能力目标:2、培养学生的动手能力和通过多种方法解决问题的能力。
情感目标:3、激发学生探求知识的兴趣,提高合作探索知识的能力。
教材简介
这个信息窗呈现的是各种各样的轮子。拟通过引导学生观察让学生发现各种各样的轮子都是圆的,引发学生提出轮子为什么设计成圆形的疑问,自然而然的引出对画圆以及圆的特点的'研究,明确怎样画圆、直径与半径的关系,从而明白轮子为什么设计成圆形的。
教学重、难点:
重点:圆的特征及各部分名称
难点:同圆或等圆中半径和直径的关系
教学过程(预习指导课)
第一课时
一、创设情境
谈话:同学们,你认识这些交通工具吗?仔细观察他们有什么共同点?
出示情境图,学生观察。
谈话:这些轮子都是圆形的'。根据这些信息,能提出什么数学问题?
学生可能提出:轮子为什么设计成圆形的呢?…
二、探索新知
1、谈话:轮子为什么设计成圆形的呢?今天,我们就来解决这个问题。下面,请大家画一个圆,研究一下。
学生独立画圆。
谈话:同学们得到圆了吗?谁能说说你是怎样画出圆的呢?
小组内进行交流。
学生可能会出现不同的方法;
找有代表性的到黑板上来画一下。可能会出现以下几种情况:
①用图钉、细线和铅笔画图,画时图钉要固定好,细线要拉紧,就可以画出一个圆。
②用圆形的瓶子盖可以画出一个圆。
谈话:我们来看这几个同学画的,有什么问题吗?(不圆)为什么会不圆呢?你们画的时候有问题吗?
学生阐述自己的想法,师生予以评价。
谈话:怎样才能画出一个规范的圆呢?给大家介绍一种画圆的仪器——圆规。请大家用圆规画圆试一试。谁来说说你是怎样画的?
小组内交流:用圆规画圆时,先把圆规的两脚分开,定好两脚之间的距离,再把有针尖的一脚固定在一点上,把有铅笔的一脚旋转一周。
谈话:有针尖的一脚固定的这一点,叫做圆心,用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。(教师边讲边板书在黑板上)
请同学们打开书,看自主练习第2题:找出下面圆的直径和半径。(生答)
2、谈话:直径和半径是圆中不同的线段,它们之间有什么关系呢?请同学们小组合作研究一下试试?
学生小组合作。
谈话:哪个小组说一说你们是怎研究的?有什么发现?
学生可能会出现下列情况:
①通过对折,发现圆有无数条直径。
②通过画一画,我发现圆有无数条半径。
③通过测量发现同一个圆里所有的直径都相等,所有的半径都相等。
④通过对折或测量发现这个圆中,直径是半径的两倍,半径是直径的一半。用字母可以表示为:r=1/2d;d=2r。
3、谈话:谁能用今天学习的内容解释轮子为什么设计成圆形的?
三、巩固应用
1、想一想,填一填。
自主练习的第3题,让学生独立完成,然后集体交流,让学生说一说计算的方法。
2、按要求画圆。
自主练习第4题,画在练习本上,同桌互相检查。然后请学生交流一下,是怎样画的?
谈话:把有针尖的一脚固定在一点上,就是圆心,两脚分开的距离是半径。
四、全课小结
谈话:这节课你有什么收获?你对自己的表现满意吗?
圆的认识教学设计 篇4
1. 例1。
编写意图
例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。
教学建议
教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。
2. 例2及“做一做”。
编写意图
例2教学圆的认识和画法。
圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。
教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。
“做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。
教学建议
教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的'内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。
教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。
3. 例3及“做一做”。
编写意图
例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。
教学建议
教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。
“做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。
4. 关于练习十四中一些习题的说明和教学建议。
第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5 cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7 cm。
第3题,使学生知道两端都在圆上的线段,直径是最长的一条。
第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。
第6题,可先固定一点,然后以此为圆心,用长为5 m的绳子绕此点旋转一周即可画出。
第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。
圆的认识教学设计 篇5
学习目标:
1、认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系;初步学会用圆规画圆。
2、通过小组学习,动手操作等活动,体验小组合作学习、分享学习成果的乐趣。
3、感受圆在生活中的广泛应用,体验数学与生活的密切联系。
学习重点:探索出圆各部分的名称、特征及关系,学会用圆规画圆的方法。
学习难点:通过动手操作体会圆的特征及画法。
学具准备:圆形纸片、圆形物体、直尺、圆规、线、剪刀等。
学习过程:
【纵横生活设疑激趣】
图图是个爱动脑筋的孩子,今天他坐车去上学,他发现汽车的轮子都是圆形的,他想为什么轮子都要做成圆形,而不做成正方形、长方形或三角形呢?生活中还有哪些物体也是圆形的?
【动手实践自主探究】
活动一:探究圆各部分的名称与特征
1、画一画:你能想办法在纸上画一个圆吗?
说一说你是怎么画的?
2、剪一剪:把你画的圆剪下来?
圆与我们过去认识的长方形、正方形、三角形等平面图形有什么不一样?(圆是由曲线围成的平面图形)
3、折一折:先把圆对折打开,换个方向,再对折,再打开……这样反复折几次。
仔细观察:折过若干次后,你发现了什么?(结合书理解)
在动手实验与合作交流中得出圆心、半径、直径的概念:在圆内出现了许多折痕,它们都相交于一点,这一点就是(),圆心一般用字母()表示。连接圆心和圆上任意一点的线段叫做(),半径一般用字母()表示。通过圆心并且两端都在圆上的线段叫做()。直径一般用字母()表示。
4、找一找:在同一个圆里,有多少条半径、多少条直径?
在同一个圆里,半径有()条,直径有()。
5、量一量:自己用尺子量一量同一个圆里的几条半径和几条直径,看一看,你有什么发现?
在同一个圆里,半径有()条,所有的半径都(),直径有()条,所有的直径都(),半径是直径的(),直径是半径的()。
活动二:探究圆的画法
1、想一想,画一画:怎样才能画出任意大小的圆?圆的位置和大小和谁有关?
看看书上的理解是不是和你想的一样,试用圆规画一个半径是2CM的圆。
2、思考:图图想在操场上画一个圆做游戏,没有那么大的圆规怎么办?
【巩固提高内化新知】
1、用圆规画一个半径是3cm的圆,并用字母O、r、d标出它的圆心、半径和直径。
2、用圆规画圆,如果半径是4cm,圆规两脚之间的距离取()cm,如果要画直径是10cm的圆,圆规两脚之间的距离取()cm。
【解惑释疑应用拓展】
思考:车轮为什么是圆形的?车轴应装在什么位置?
板书设计:圆
圆心:o
直径:d
半径:r
达标测评
一、填空
1.圆中心的一点叫做(),用字母( )表示。
2.通过(),并且两端都在圆上的(),叫做圆的直径。用字母( )表示。
3.从()到()任意一点的线段叫半径。用字母( )表示。
4.圆是平面上的一种()图形。将一张圆形纸片至少对折( )次可以得到这个圆的圆心。
5.在同一圆所有的线段中,()最长。
6.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。
7.在同一个圆里,半径是5厘米,直径是()厘米。
8.画圆时,圆规两脚间的距离是圆的( )。
9.()确定圆的位置,()确定圆的大小。
10.在一个直径是8分米的圆里,半径是()厘米。
11.用圆规画一个直径20厘米的`圆,圆规两脚步间的距离是()厘米。
二、判断
1.所有的半径长度都相等,所有的直径长度都相等。()
2.直径是半径长度的2倍。()
3.两个圆的直径相等,它们的半径也一定相等。()
4.半径是射线,直径是线段。()
5.经过一个点可以画无数个圆。()
6.两端都在圆上的线段就是直径。()
7.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。()
8.在画圆时,把圆规的两脚张开6厘米,这个圆的直径是12厘米。()
9.半径能决定圆的大小,圆心能决定圆的位置。()
返回首页